Precision top quark physics at a future linear e⁺e⁻ collider

Marcel Vos
IFIC (U. Valencia/CSIC), Spain

With special thanks to:

W. Bernreuther (RWTH Aachen), F. Richard, R. Poeschl (LAL Orsay) I Garcia, E. Ros, P. Ruiz Femenia (IFIC Valencia)

LC top physics

350 GeV:

top quark mass to < 100 MeV from threshold scan (+width & Yukawa)

Kuhn, Acta Phys.Polon. B12 (1981) 347
Martinez, Miquel, EPJ C27, 49 (2003)
Seidl, Simon, Tesar, Poss, EPJC73 (2013) 2530
A. Juste et al. ArXiv:1310.0799

500 GeV:

New physics: precise characterization of $t\bar{t}Z$ and $t\bar{t}\gamma$ vertices

M.S. Amjad et al., arXiv:1307.8102 F. Richard, arXiv:1403.2893

500-1500 GeV:

ttH direct access to top Yukawa coupling

How tightly are these objectives tied to the center-of-mass energy assumed in the study? Can we extract the top quark mass precisely and rigorously at $\sqrt{s} > 360$ GeV? How does our new physics reach change with center-of-mass energy? What's the sweet spot for the top Yukawa coupling measurement?

R(s)cross-section normalized to X-SeC for massless fermion

Theory status

State-of-the-art: $O(\alpha_s^3)$ QCD corrections of $e^+e^- \rightarrow tt$ x-sec with per mil precision One-loop EW corrections have a large effect: 3% on σ , next order likely small

QCD corrections

to $e^+e^- \rightarrow tt + X$

Kiyo, Maier, Maierhöfer, P. Marquard, arXiv:0907.2120 Hoang, Mateu, Zebarjad, Nucl. Phys. B 813 (2009) 349-369

Bernreuther, Bonciani et al., hep-ph/0604031

Electroweak corrections

Glover et al. hep/ph04010110 Fleischer et al. hep/ph0302259 Khiem et al., arXiv:1403.6556/6557

At threshold: NNNLO resummed calculations include quasi-bound-state effects (see Peter Marquard's talk in the top session)

Top quark pairs vs. WbWb

WbW $\overline{b} \rightarrow 6$ fermions has several non-negligible sources

(tt ~ 90%, single top ~9%, WW γ /Z/h ~ 1%)

Do we select tt or WbWb? (at 500 GeV single top practically indistinguishable)

The WbWb cross section is 5 to 50% larger than the top quark pair cross-section

Difference increases with center-ofmass energy

...Single top quark production...

...WWγ/Z/h...

Must measure rate and properties of WbWb production. For a precise comparison of data and prediction more theory work is needed!

Who's afraid of boosted top quarks?

LHC data, likely $t\bar{t}$ (purity ~70%), m ~ 2.5 TeV

Boosted tops reconstructed as "fat jets" and tagged using jet substructure

Searches have attained a mass reach > 2 TeV *EPJC74 (2014) 2792*

Fully corrected measurement up to $p_T > 1$ TeV ATLAS-CONF-NOTE-2014-057

Searches: mZ' > 2.1 TeV (was 900 GeV)

Differential x-section for particle-level tops

LCWS14

Boosted top at LC

Increase in luminosity nearly compensates for drop in cross-section at large energy

500 GeV: $600 \text{ fb x } 500/\text{fb} \sim 300.000 \text{ pairs}$ 1 TeV: $200 \text{ fb x } 1000/\text{fb} \sim 200.000 \text{ pairs}$

Selection: cross section is large compared to other 6-fermion processes:

 $\sigma(tt) \approx 600 \text{ fb at } 500 \text{ GeV}$

W⁺W⁻ and qq are easily reduced requiring jet multiplicity, b-jets...

(note: flavour tagging performance depends on b-jet energy)

N=6 exclusive clustering at low energy

N=2 exclusive clustering at $\sqrt{s} > 1$ TeV

Radiation from top quarks threatens N=6 exclusive clustering at high energy, but N=2 clustering takes over right in time

Top quark selection/reconstruction

Top reconstruction is non-trivial at any center-of-mass energy

Low energy: challenging combinatorics

alleviated by kinematic fit

High energy: top jets \rightarrow no combinatorics for s = 1 TeV and up!

must deal with background (jet grooming)

Top reconstruction at high energy may well be better than at low energy!

Top quark mass

LHC is taking top mass interpretation seriously!

LC mass extraction at threshold is considered the final verdict.

This measurement is tied to $\sqrt{s} = 2m_t$ Very hard to beat precision and rigour of interpretation in continuum.

Linear Collider alternatives to threshold scan:

- Direct measurement (Seidel et al.) (stat. precision ~ 80 MeV at $\sqrt{s} = 500$ GeV)
- Extract pole/MS mass in continuum (Boronat, Fuster, in progress) (precision to be evaluated)
- Extraction from top jets (Mantry et al.) (rigorous SCET interpretation, precision unknown, $\sqrt{s} = 1$ TeV)

Explore alternatives, but don't give up on the threshold scan unless you have to

What else is there at √s ~ 350 GeV?

Electric dipole moment, from TESLA TDR:

If a light neutral Higgs boson (mh < 160 GeV) with undefined CP parity exits, its reduced scalar and pseudoscalar couplings to top quarks could be of order 1 which leads to CP-violating form factors that can be sizeable not too far away from the tt threshold. A few % at \sqrt{s} = 370 GeV,

W. Bernreuther, T. Schröder, T.N. Pham. Phys. Lett., B279:389, 1992.

h(125) can still have pseudo-scalar admixture, but the effect is expected to be smaller than the few % in TESLA times (W. Bernreuther, very preliminary)

Some studies claim top Yukawa coupling can be measured to a few % statistical Uncertainty...

(cf. 35% in Martinez & Miguel \rightarrow significant theory error, precise extraction requires α_s to be known way better than current world average)

Top quark couplings

$$\sigma(+) \quad A_{FB}(+) \quad \lambda_{hel}(+) \quad (+=e_{R}^{-}) \\ \sigma(-) \quad A_{FB}(-) \quad \lambda_{hel}(-) \quad (-=e_{L}^{-}) \end{cases} \Rightarrow \begin{cases} F_{1V}^{\gamma} & * & F_{2V}^{\gamma} \\ F_{1V}^{Z} & F_{1A}^{Z} & F_{2V}^{Z} \end{cases}$$
 for 2 beam polarizations: - x-section - FB asymmetry

Uncertainty ILC (preliminary) LHC (hep-ph/0601112) 10⁻¹ 10⁻² \tilde{F}_{2V}^{γ}

Measure 3 observables

- top polarization

Extract 5 form factors

Assumptions:

LHC: 14 TeV, 300/fb

LC: $\sqrt{s} = 500$ GeV, L = 500/fb

 $P(e^{-}) = +/-80\%, P(e^{+}) = -/+30\%$

 $\delta\sigma$ ~ 0.5% (stat. + lumi)

 $\delta A_{FR} \sim 2\%$ (stat. + syst.)

 $\Delta\lambda_{hol} \sim 4\%$ (stat. + syst.)

Polarization needed to disentangle photon and Z-boson form factors! arXiv:1307.8102

Quantitative result for impact of positron polarization can be obtained quickly

New physics sensitivity

Quantify new physics reach of a precise top couplings measurement

A_{FB} versus √s

What about A_{FB} ?

Order α_s^2 results in Bernreuther, Bonciani et al., hep-ph/0604031 "... we conclude that the 2-parton QCD corrections to the lowest order asymmetry are moderate to small for $\sqrt{s} > 400$ GeV"

Scale variations yield <1% error @ NNLO

One-loop EW corrections have a large effect: 20% on $A_{_{FB}}$, at 500 GeV. Two-loop contribution seems small

If we want to measure A_{FB} precisely we have to move away from threshold. A 500 GeV LC has a twice higher asymmetry than at 400 GeV. Precision vs. \sqrt{s} to be evaluated.

Sensitivity to BSM physics

Assuming 1.5 % deviations on A_{FR} measurement can be observed (J. Trenado, M.V.):

ILC500 GeV: sensitive for Z'_{SSM} mass up to ~3 TeV

Z' mass	SM	1 TeV	2 TeV	3 TeV	4 TeV	5 TeV
A_{FB}^{tt}	0.41 ± 0.01	0.289	0.382	0.397	0.401	0.407

ILC1 TeV: mass reach for Z'_{SSM} > 5 TeV

Z' mass	SM	1 TeV	2 TeV	3 TeV	4 TeV	5 TeV
A_{FB}^{t}	0.554	0.289	0.434	0.513	0.532	0.537

Luminosity required to see signals of massive Z' Assumptions:

$$\delta \sigma / \sigma = 0.7\%$$
, $\delta A_{FB} / A_{FB} = 1.5\%$, $\delta A_{LB} / A_{LB} = 2\%$

F. Corradeschi, LCWS10, arXiv:1202.0660 and M. Battaglia, LCWS11

The closer we get [to the new physics scale], the more we feel [its indirect effects]

Made explicit in effective operator analysis \rightarrow constant form factors replaced by c/Λ^2 , where Λ is new physics scale

J.A. Aguilar argues for measurements at several energies, arXiv:1206.1033

Marcel Vos (mar

Associated production of a Higgs boson with a top quark pair is a direct probe of the top Yukawa coupling

Fit extracts more precise, but less direct, values from gg \rightarrow H and H $\rightarrow \gamma\gamma$ (LHC) and H \rightarrow cc (LC)

LHC direct ttH prospects have large uncertainty.

Be ready to react to the unexpected.

ttH

Cross-section:

550 is better than 500!

Gentle rise to 700 GeV

Beyond 750 GeV x-sec drops:

- factor 2 at $\sqrt{s} = 1.6$ TeV
- nearly one order at 3 TeV loss with larger instantaneous luminosity

Consider range 550 < √s < 1600 GeV

√s [GeV]

Jet reconstruction

Jets are better defined at higher energy (algorithmic confusion decreases)

Energy is measured best at low energy ($dE/E \sim 3\%$)

ttH jet reconstruction strategies:

- fully resolved H → bb: 6 or 8 jets (I+jets, fully hadronic)
- half-boosted: 4 W-jets, two b-jets, one Higgs jet (H → WW, Junping Tian)
- fully boosted: 2 top jets, 1 Higgs jet

All of these work to some extent, none of them are perfect

From published studies:

Yonamine et al., Measuring the top Yukawa at the ILC at $\sqrt{s} = 500$ GeV, PRD84 $1 \text{ ab}^{-1} \rightarrow 6j+l$, $8j \rightarrow S/B \sim 0.6+0.3$, significance $= 5.2\sigma \rightarrow \delta y \sim 10\%$

Price et al., Full simulation of the top Yukawa coupling at the ILC at $\sqrt{s} = 1$ TeV, arXiv:1409.7157 $1 \text{ ab}^{-1} \rightarrow 6j+l$, $8j \rightarrow S/B \sim 0.4 + 0.3$, significance = $7.5+10 \rightarrow \delta y \sim 4\%$

Study ongoing for 1.4 TeV, Ph. Roloff (opening plenary), S. Redford (Higgs session) $\delta y \sim 4.5\%$

Summary

Top quark mass and $t\bar{t}Z$ and $t\bar{t}\gamma$ couplings measurement are pillars of the LC case

$$\delta \, m_t^{MS} {<} 100 \, MeV$$
 , $\delta F_{1V}^{\gamma,Z}$, $\delta F_{1A}^{\gamma,Z} {<} 1 \, \%$

One real "sweet spot" → top quark pair threshold at 350 GeV offers unique opportunities (mass, influence of the Higgs boson)

Coupling measurement can be performed nearly anywhere in the continuum; achieves best new physics reach at higher energy

Polarization is needed \rightarrow exact impact of different scenarios to be evaluated Some boost is needed for $A_{FB} \rightarrow$ evaluate precision at 380, 400, 420 GeV

Measurement of top Yukawa in ttH requires at least 550 GeV; sensitivity vs √s exhibits a broad maximum

exact position is uncertain, likely ~ 1 TeV, result not competitive with fit \rightarrow wait for 1.4 TeV run?

To be taken into account more consistently across all energies: theory uncertainties, single top strategy

