Status report on

A 2D position sensitive microstrip sensor with charge division.

A segmented Low Gain Avalanche Detector for tracking

E. Currás, M. Fernández, J. González, R. Jaramillo, D. Moya, <u>I. Vila.</u> Instituto de Física de Cantabria(CSIC-UC)

P. Fernández, S. Hidalgo, V. Greco, G. Pellegrini, D. Quirion.

Centro Nacional de Microelectrónica at Barcelona (CSIC)

Outline

- Motivations for the R&D.
- A 2D position sensitive microstrip sensor.
 - Laser, radioactive source and particle beam characterization
- Improving the design
 - _ Integrated signal routing lines (Crosstalk suppression).
 - Incrementing the signal: Low Gain Avalanche Detectors.
- Summary

R&D Motivation

– Charge division in microstrips:

- Long microstrips ladders (several tens of centimeters) proposed for the ILC tracking detectors.
- _ Getting the particle hit coordinate along the strip using the charge division method.
- _ Avoid the complexity of double sided sensors and the additional material of a second layer of sensors.

Low gain segmented p-type pixels (strips)

- Implementing a small gain in the segmented diode so we can reduce the thickness of the sensors without reducing the signal amplitude
- _ Smaller contribution to the material budget.

Charge Division in uStrips

Simple single-side AC-coupled microstrip detectors

with resistive coupling electrodes.

X-coordinate: cluster-finding algorithms for strip detectors. Y-coordinate: Resistive charge division method.

Resistive material

Aluminium

 $S_1 = f(y)$ $S_2 = f(L-y)$ ** Electrode resistance >> preamplifier impedance.

Resistive material: high doped polysilicon

** V. Radeka, IEEE Transaction on Nuclear Science NS-21 (1974) 51

Proof-of-Concept Prototype

ALIBAVA DAQ system for microstrip detectors, based on the Beetle analogue readout ASIC

Strip: length =20 mm width =20 um Pitches: Implant=80 um readout= 80 um Electrode: R/um = 2.8 Ohms/um R/um = 12.2 Ohms/um

LAT CABL

- 256 channels
- peaking time = 25ns
- S/N≈20 for standard no irradiated detectors

- 3D axis stage with displacement accuracy \approx 10 μ m
- Pulsed DFB laser λ =1060nm

USB CABLE

- Gaussian beam spot width ≈ 15 µm
- pulse duration 2ns

Clean room laboratory at IFCA, Santander

I. Vila - LC Workshop 6-10 Octobre Belgrade, Serbia. 6

Longitudinal spatial resolution for 6 MIPs signal

Sigma

Wind With States and S

First successful integration and synchronization with AIDA MIMOSA pixel telescope

Test beam at CERN SPS Pion Beam, Nov 2012

Test Beam Characterization

•

Test Beam: Spatial Resolution

Trans. Coordinate X ~ 25 μ m (pitch/ $\sqrt{12}$ = 23 μ m) Long. Coordinate Y ~ 1.7 mm (8.5% strip length)

Radioactive Source: SNR estimation

Defined as $SNR \equiv (S1 + S2)/\sqrt{\sigma 1 + \sigma 2}$ (drives the spatial resolution)

I. Vila - LC Workshop 6-10 Octobre Belgrade, Serbia. 10

Charge-division sensor: Intermediate summary

- The charge-division concept on microstrips has been confirmed experimentally, two limitations:
 - Both ends readout difficult to integrate in long ladder (need to combine the information from both ends)
 - Signal attenuation due to the strip resistance (current prototypes 20% signal loss for 2cm length sensor).
- Proposed solutions:
 - Integrated signal lines in the sensor to route the signals to the same end.
 - Reduce the strip resistivity (limited by the amp. charge resolution) and/or integrate charge amplification mechanism in the sensor.

Resistive strips with internal signal routing

Resistive strips with internal signal routing (2)

Induced signal on metallic vias superposed to "direct signal" propagated through polysilicon electrode.

Measured Fractional position shows a clear bias

Isolation structures for cross-talk suppression

Spin-off of FOSTER sensors proposed by KIT at CMS

I. Vila - LC Workshop 6-10 Octobre Belgrade, Serbia. ¹⁴

Crosstalk suppression (common stop)

Time Resolved Readout IR-laser induced (e-TCT like measurement)

R

No grid Al. Implant – Al routing – Implant

Crosstalk Suppression: Current pulses

Infrared pico second laser (fast, 1GHz readout channel)

Cross-talk suppression: Integrated charge

Flat charge pedestal for Al routing track, suppressed by calibration

I. Vila - LC Workshop 6-10 Octobre Belgrade, Serbia. 17

Increasing the signal: LGAD

Implanting an n++/p+/p- junction along the centre of the electrodes. Under reverse bias conditions, a high electric field region is created at this localised region, which can lead to a multiplication mechanism (impact lonization).

Advantages = Thinning while keeping same S/N as standard detectors.

P. Fernandez et al, "Simulation of new p-type strip detectors with trench to enhance the charge multiplication effect in the n-type electrodes", Nuclear Instruments and Methods in Physics Research A658 (2011) 98–102.

PAD LGAD: Red laser TCT characterization

Strip LGAD: Electric Field

- To obtain the manufacture parameters (doping profiles)

Current status: preliminary results on strips

RD50 LGAD GROUP

(CERN, CNM, Barcelona, Torino, Ljbljiana, Santander, SCIPP, Freiburg, Glasgow, Liverpool)

- Very preliminary test do not show signal amplification.
- New run in progress and new concept to implement: p-on-p sensor (holes readout with electron amplification in a nonstructured anode (padlike) to ensure uniform amplification

Summary

- A novel 2D position-sensitive semiconductor detector concept based on the resistive charge-division readout method and manufactured using standard semiconductor planar techniques has been introduced.
- A full testing cycle of this technology has been successfully completed: laser, RS and test beam source.
- To be used as a tracking sensor suitable:
 - Single end readout → the integration in the sensor of signal routing tracks
 - _ Increase SNR → Reduction of the strip resistivity and Linear gain of the signal
- The first issue has been tackled integrating isolation structures (preliminary results are positive).
- New detector designs aim to fabricate detectors with moderate gain (RD50) and p-on-p strip LGAD.

THANK YOU !

Equivalent Electrical Circuit

C_{sub}

R_i

output

C

Detector (p⁺-on-n) model *** 80 cells 250 µm long R_{int} Rint R_{int} Rint C_{sub}- $\mathsf{C}_{\mathsf{sub}}$ R_{sub}≩ $\mathbf{C}_{\mathsf{sut}}$ R₅ub≩ R_{sub} ≥ R_{sub}} R_{sub}≹ V_{bias} Pulse injected in the detector network (nA) Peaking time 25ns (Beetle chip 400 R_{fp} ALIBAVA DAQ system). 350 rise time 2ns C_{fp} 300 - R_2 • Q~4fC 250 input Cd R₁ 200 150 -R_d 100 50 -0 20 60 80 100 120 140 160 180 200 0 40 Time (ns)

At V>>Vdep (for instance 980V) the RC tails are short. Check it with simulation:

Signal Propagation – Linearity (Simulation)

Red laser TCT characterization

Charge collection efficiency

P-type diffusion diode

Standard diode

I. Vila - LC Workshop 6-10 Octobre Belgrade, Serbia. 27