

LINEAR COLLIDER COLLABORATION

Designing the world's next great particle accelerator

Status of target and photon collimator work for polarized e+

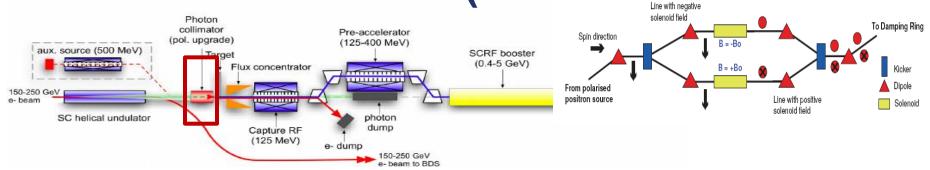
LCWS 2014, Belgrade, Serbia

7th October 2014

Sabine Riemann, Friedrich Staufenbiel, DESY

Andriy Ushakov, Gudrid Moortgat-Pick, Hamburg U

Peter Sievers, CERN/ESS



Outline

- Positron target
 - Stability and imbalance studies
 - Radiation cooling
- Photon collimator
 - Fixed design
 - Alternative design options to be studied
- General studies and tests concerning materials
- Summary

ILC Positron Source (TDR)

Positron source is located at end of main linac, uses e-beam

- Superconducting helical undulator
 - K=0.92, λ =1.15cm, (B=0.86T on the axis), aperture 5.85mm
 - Max 231m active length
- <u>e+ Production Target</u>
 - 400m downstream the undulator
 - 0.4 X0 Ti alloy
- Positron Capture: Pulsed flux concentrator + capture RF
 - Alternative: quarter wave transformer + capture RF
- Normal-conducting pre-acceleration up to 400MeV
- e+ polarization
 - Default: ~30%
 - polarization upgrade up to 60%: photon collimator
 - Polarization sign is determined by undulator winding → Spin Flipper

Main problems

Energy deposition in target

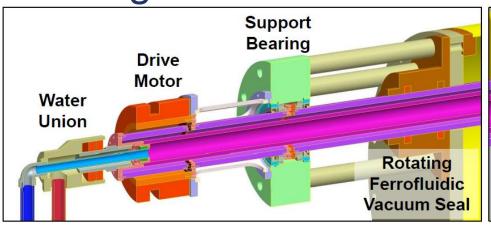
- Ti alloy wheel, $\emptyset = 1m$, 2000rpm
 - PEDD per bunch train: 67.5 J/g $\Leftrightarrow \Delta T_{max} = 130K$ 101.3 J/g h.lumi $\Leftrightarrow \Delta T_{max} = 195K$
 - Energy deposition per bunch: 0.31 ... 0.72J ⇔ ΔT ≈ O(1K)
 - Polarization upgrade to 50% or 60% increases E_{dep} and PEDD Fatigue limit in Ti (10⁷ cycles): $\Delta T \sim 425K$ (240MPa)

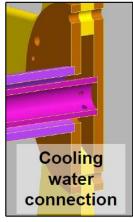
Spinning target: Rotation speed

- Vacuum seals, bearing
- Mechanical instabilities
- cooling of spinning target

Energy deposition in photon collimator

- Collimator is partial γ beam dump, absorbs ~50% of γ beam power
- Design strongly coupled to drive e- beam energy
 - Details see Friedrich's talks at previous POSIPOL, LCWS and ECFA workshops


Positron target (undulator based source)


- Most important concern is the target
 - wheel, Ti4Al6V; 1.4cm thick (0.4 X0) Ø 1m, 2000rpm (100m/s)
 - Vacuum environment
 - Power deposition 2-7kW (PEDD in Ti: J/g)
 - Water cooling (TDR); alternatives under consideration Capture Magnet (radiation cooling) **Photon Beam Positrons** Ferrofluidic Rotating vacuum seal Support bearings prototype @LLNL Target whe 2000 rpm 1ms beam Drive motor Water Union Cooling water passes through shaft Up spokes to rim J. Gronberg

LCMS 2014: target machanics, cooling, photon collimation

ILC e+ target: Test of vacuum seals at LLNL

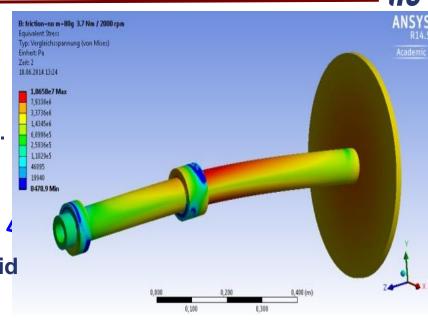
J. Gronberg

Built a full scale prototype shaft

- Water cooling in the shaft (⇔ balancing)
- Ferrofluidic seals
- Same weight as Ti wheel but lower moment of inertia

The ferrofluid seal didn't fail but:

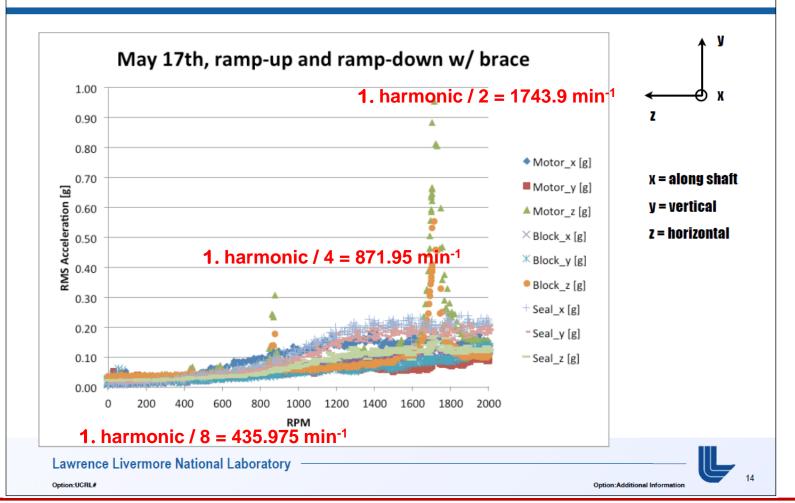
- Outgassing spikes
 - → differential pumping in region near the seal would help
- Excessive vibrations in ferrofluid seal
- significant heat dissipation due to rotation speed
 - → need special design and improved cooling system
 - → magnetic bearings at the wheel to achieve more robust system



Mechanical instabilities

See Friedrich Staufenbiel at POSIPOL'14.

- simulation of torque and reaction force at target system/prototype
 - comparison with results of prototype operation at LLNL
 - Support on both sides of wheel to avoid displacements of shaft
 - additional magnetic bearing will improve balance substantially;
 - Prototyping at LLNL → reaction forces were directed to O-rings, the ferrofluid seals were not 'the' problem
 - Improved layout needed
- Eddy current induced imbalances and heat load are small
- Resonances are 'natural', running at resonance frequencies must be avoided

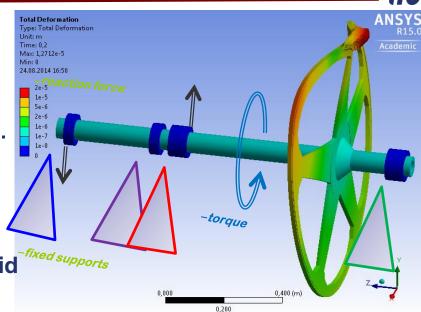

Vibration measurement of rotating wheel setup + ANSYS Simulation

Resonance: 3487.8 min⁻¹ (1. harmonic)

Balancing data from the FerroTec seal

J. Gronberg: Exp

F. Staufenbiel: Sim, 2000rpm



Mechanical instabilities

See Friedrich Staufenbiel at POSIPOL 14.

- simulation of torque and reaction force at target system/prototype
 - comparison with results of prototype operation at LLNL
 - Support on both sides of wheel to avoid displacements of shaft
 - additional magnetic bearing will improve balance substantially;
 - Prototyping at LLNL → reaction forces were directed to O-rings, the ferrofluid seals were not 'the' problem
 - Improved layout needed
- Eddy current induced imbalances and heat load are small
- Resonances are 'natural', running at resonance frequencies must be avoided
- Heat load studies for target ⇔ lower rotation speed possible
- To be done: mechanical studies & tests including cooling system

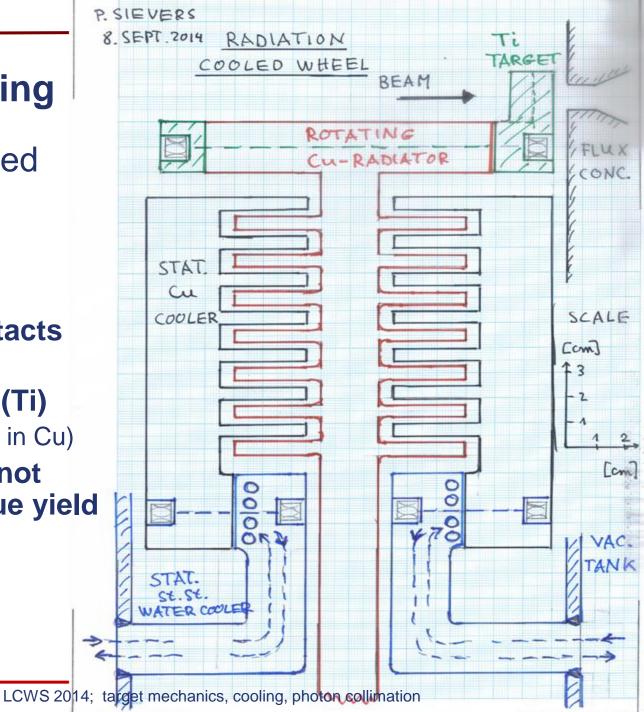
Lower rotation speed of Ti wheel?

Consider $E_{cm} = 500 \text{GeV}$, 50% polarization (K=0.92)

- 2000rpm ⇔ about 10cm length of heated area; area at rim is hit again after ~6s
 - 2625 bunches in 1ms (bunch spacing 366ns)
 'superposition' of ~55 bunches, PEDD ~65J/g (∆T_{max} ~ 125K)
 - 1312 bunches in 1ms (bunch spacing 554ns) ⇔
 'superposition' of ~36 bunches, PEDD ~43J/g (∆T_{max} ~ 82K)
- Fatigue limit: ~220 J/g (~425K) for 10⁷ cycles
- → 1500rpm ⇔ about 7.8cm length of heated area; area at rim is hit again after ~8s
 - 2625 bunches in 1ms (bunch spacing 366ns)
 'superposition' of 83 bunches, PEDD ~J/g (∆T_{max} ~ 188K)
 - 1312 bunches in 1ms (bunch spacing 554ns) ⇔
 'superposition' of 54 bunches, PEDD ~99J/g (∆T_{max} ~ 123K)

Cooling of target rim

- Power deposited in Ti target 2-7kW
- TDR: water cooling
 - so far, not yet tested for spinning wheel in vacuum
- Alternative solutions:
 - cooling by radiation
 - Need radiative surface of >1m²
 - looks promising (see talks of Andriy Ushakov, Peter Sievers at POSIPOL'14)
 - Studies are ongoing → design (DESY, Uni H, P. Sievers)
 - Protoyping (?)
 - friction cooling (Wei Gai @ POSIPOL'14)



Radiation cooling

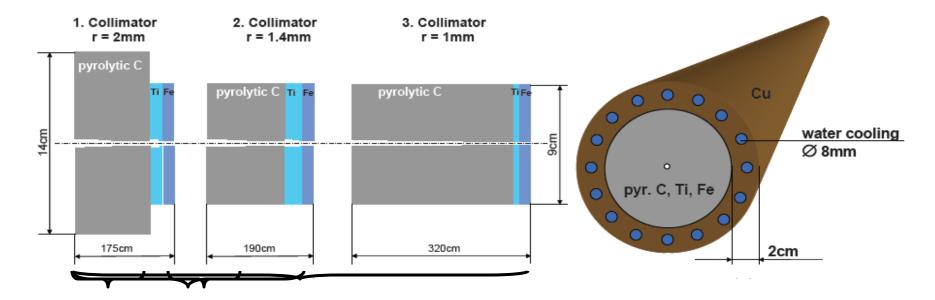
- P. Sievers' revised design version
- Important:
 - thermal contacts
 - thermal conductivity (Ti)

 $(6s \Leftrightarrow \Delta s \sim 1cm \text{ in Cu})$

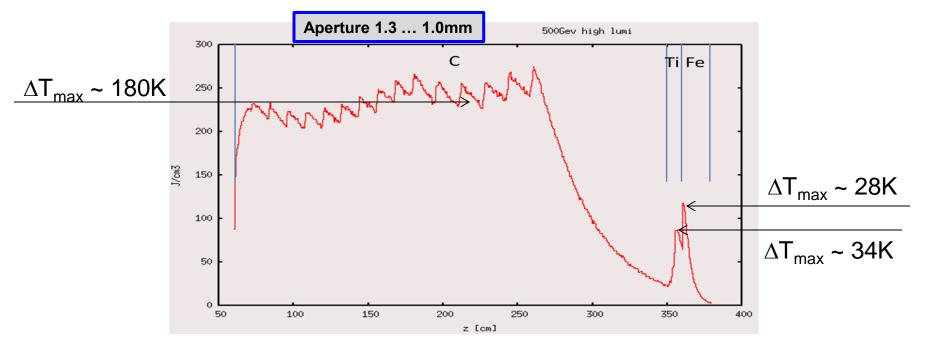
Stress must not exceed fatigue yield limits

Upgrade of positron polarization

- Nominal source design allows only ~30% e+ pol
- Increase e+ pol with photon beam collimation
- Collimator aperture coupled to drive beam energy
- undulator at end of linac ⇔ small opening angle of photon beam (proportional to 1/γ)


Parameter	Unit					L upgrade
Centre-of-mass energy	${ m GeV}$	200-250	350	500	500	500
Drive-electron-beam energy	${ m GeV}$	150	175	250	250	250
Undulator K value				0.92		
Undulator period	cm			1.15		
Positron polarisation	%	55	59	50	59	50
Collimator-iris radius	mm	2.0	1.4	1.0	0.7	1.0
Active undulator length	m	231	196	70	144	70
Photon beam power	kW	98.5	113.8	83	173	166
Power absorbed in collimator	kW	48.1	68.7	43.4	121	86.8
Power absorbed in collimator	%	48.8	60.4	52.3	70.1	52.3

Photon beam collimation


- Stationary collimator; avoid overheating!
 - Details see talks of Friedrich Staufenbiel (LCWS12, ECFA13)
 - Collimator parameters depend on energy
 - Use carbon/ graphite to distribute beam over large volume and absorb the beam
 - Stop the remaining particles → add Ti and Fe
 - → Multistage collimator (3 stages with each pyr. C, Ti, Fe)

$$P_{e+} = 50\%P_{e+} \approx 60\%P_{e+} \approx 50\%$$

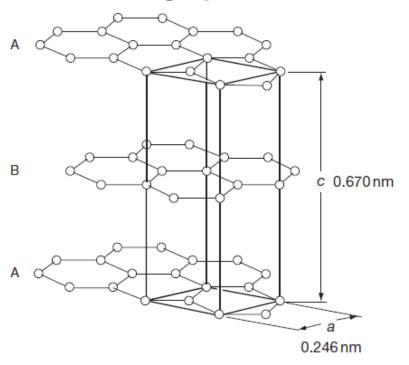
- Low Z material (larger critical energy, large X0)
 - Longer extension of shower; tapered aperture helps to reduce PEDD
 - FLUKA simulations (Friedrich) to find collimator parameters that avoid steep temperature rise → almost homogeneous (max) temperature along z

- High Z material?
 - A similar but shorter design consisting of W yields overheating due to the low critical energy (low X0, more intense shower)

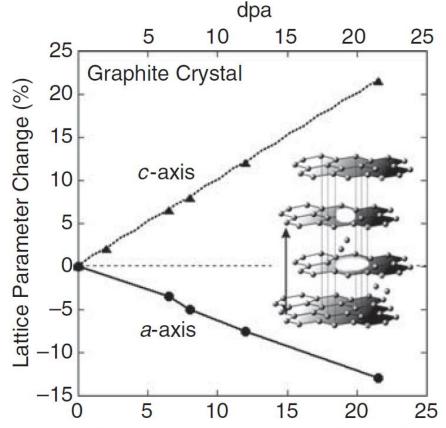
Pyrolytic graphite

Maximum dpa values in the collimator materials

E _{cm} [GeV]	250		350	500 (h.lumi)
E _{e-} [GeV]	125	150	175	250
	1st collimator		2 nd collimator	3 rd collimator
Pyr. C	1.0	1.6	2.7	3.0
Ti8Mn	0.7	1.1	2.2	2.5
Iron(St-70)	0.5	0.8	1.7	1.7


these high values occur near the inner surface of the collimator

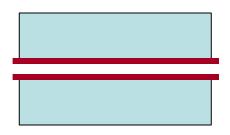
 Expect dimensional change for dpa values larger than ~0.5



Structure of graphite

Graphite: anisotropic material

- → anisotropic material properties:
- thermal expansion coefficient,
- dimensional changes under irradiation


Fast Neutron Eluence 10²¹ n/cm²

Swelling

- increases dimension along z by few %
- decreases dimension in x,y direction slightly at inner collimator surface

- Depends on temperature
- Depends on radiation level

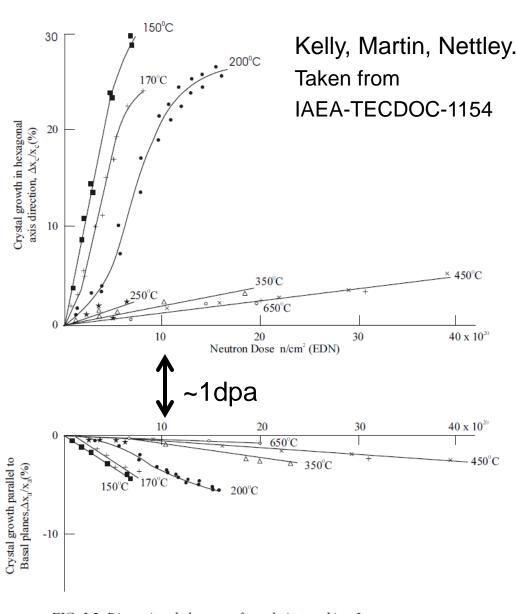


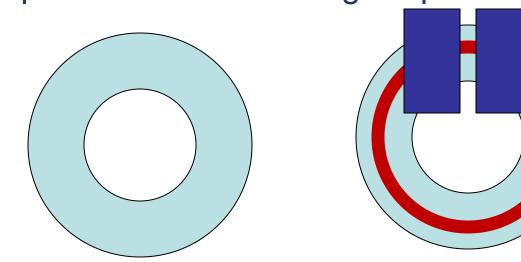
FIG. 3.5. Dimensional changes of pyrolytic graphite: Low temperature.

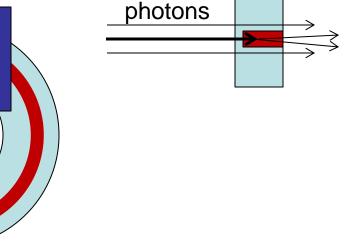
Some comments

- Expect substantial dimensional in pyr graphite change for ≥0.5dpa
 - Changes depend on irradition particle type and energy and on temperature
- Swelling could damage the innermost layer;
 We do not know which dimensional change will be obtained
 - Max temperature rise $\Delta T \sim 50-200 K$ in pyr. graphite
 - only very thin layer of high dpa
 - Surface damage ? Lifetime?
- For our collimator we need quite large blocks of pyr graphite, but it is available only in ~1cm thick slices
 - difficult for construction of ~1-3m long collimator parts
- Vacuum
 pyrolytic graphite ?

The design for a stationary collimator is a first step.

Better ideas are welcome and must be studied in detail

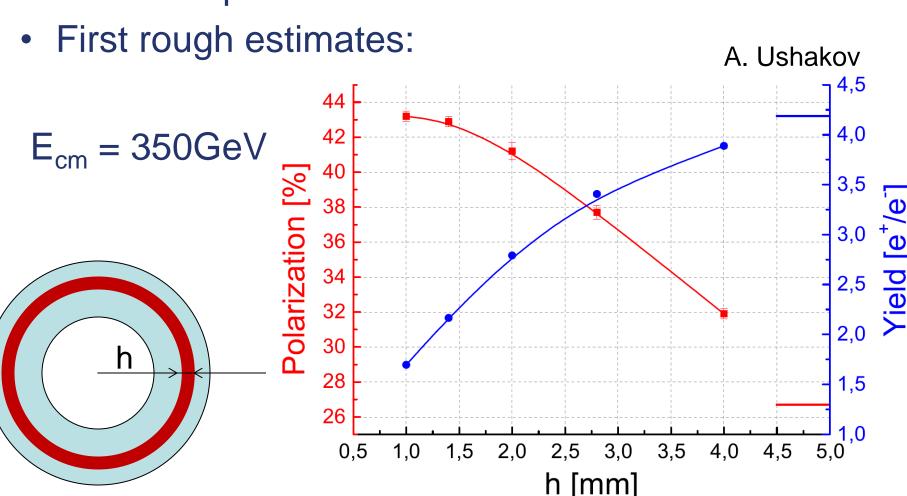




Alternative collimator design: First idea

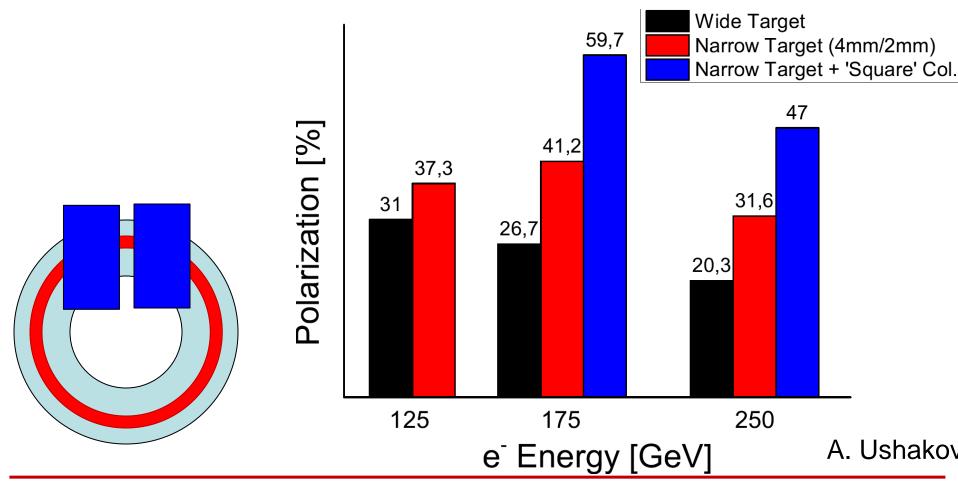
 Instead using a rim of target material, the target material (preferably higher Z) is embedded in a holder material with lower Z

 Height of the target corresponds to collimator aperture desired for higher polarization


 In addition, simple collimators could further increase the e+ pol

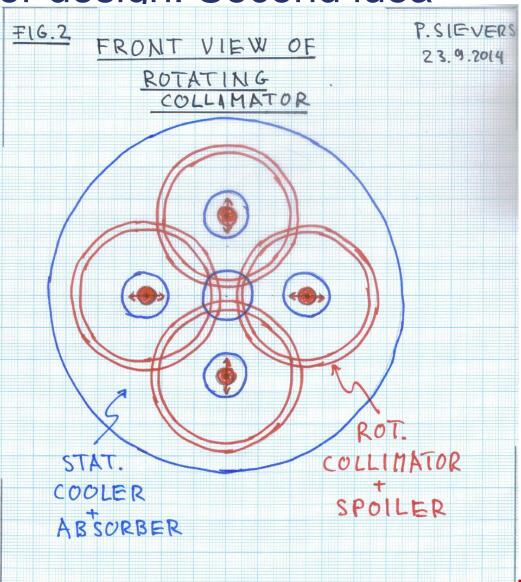
First Idea (contd)

Which e+ pol could be reached?



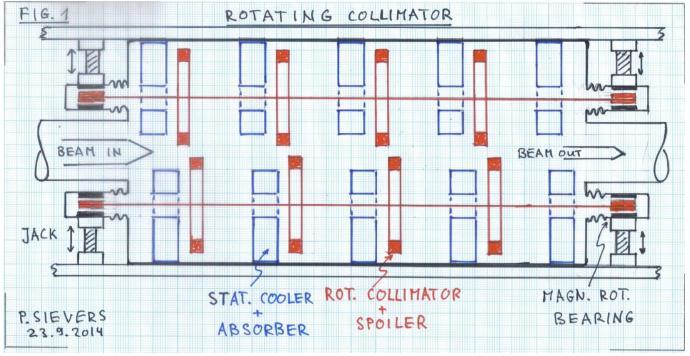
First Idea (contd)

Which e+ pol could be reached? (K = 0.92)



Alternative collimator design: Second idea

 Use a system of rotating spoilers + absorbers to dump the shower



Alternative collimator design: Second idea

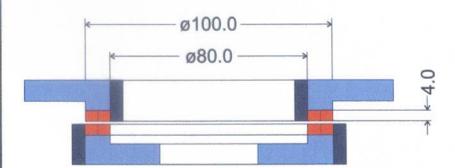
Use a system of rotating spoilers + stationary cooled absorbers

- Simulation studies needed
- although the rotation speed is below that of the Ti target, the solution is not easy

Summary

- Positron target of undulator based source:
 - Rotating wheel design can be improved, in particular
 - · magnetic bearing
 - 2-side support
 - Alternative (no-water) cooling system
 - Lower rotation speed
 - no showstopper but a R&D work remains
 - To be done: mechanical studies & tests including cooling system
- Cooling options to be considered:
 - Water cooling ⇔ prototyping
 - Radiation cooling (principle design exists)
 - Friction cooling
- Photon collimator ⇔ polarization upgrade
 - Principal design exists
 - Alternatives under study
- Prototyping, endurance tests are necessary; fatigue load of target material?
- Resources needed

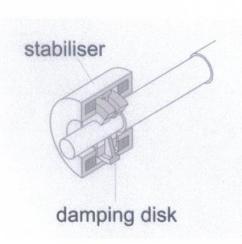
backup


Concept study of heavy rotor with "Juelich" bearings

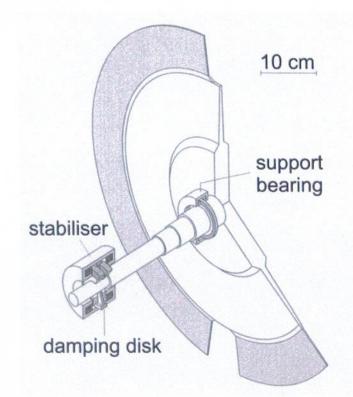
P. Sievers, POSIPOL2014

- 100 kg steel rotor levitated by 0.2 kg ferromagnetic material
- Support bearing with one gap / two double rings

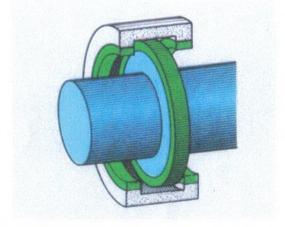
Magnetic (double) ring dimension: Ø 80/100 mm, height 4 mm



Outlook:


Design of above permanent magnetic bearings easily expandable for much heavier rotors by using multiple stacked double ring magnets

Typical design of system "Juelich" chopper bearings



Stabiliser

P. Sievers, POSIPOL2014

Support bearing

- Two rotating permanent magnets made out of NdFeB
- Two coils
- Copper disk for damping via eddy currents
- Steel case

- Positioned in mass centre
- Passive bearing
- Permanent magnetic rings made out of NdFeB

Disk diameter:

Up to 750 mm

P. Sievers, POSIPOL2014

Disk materials:

High strength aluminium / Titanium alloy / Carbon fibre

Rotor mass:

Up to 50 kg

Rotational speed:

Up to 1000 Hz / 60,000 RPM

Highest Phase stability:

Better than 2 ns (electronically)

More than 30 Years Experience in chopper design

Some examples:

- NEAT chopper cascade (7 disks) at HZB, former HMI, Germany
- DCS chopper cascade (7 disks) at NIST, USA
- IN5 chopper cascade (6 disks) at ILL, Grenoble
- SANS-NG3 chopper system (2 disks) at NIST, USA
- MARS chopper cascade (5 disks) at PSI, Switzerland
- NSE chopper cascade (4 disks) at SNS, USA
- HET, MAPS, MARI: Fermi choppers for ISIS, UK
- IN6 Fermi chopper for ILL, Grenoble
- BioCARS, 1 kHz X-ray chopper, Advanced Photon Source, Argonne, Illinois, USA

Mitglied der Helmholtz-Gemeinsch

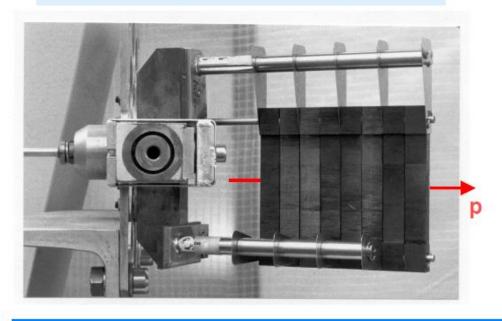
Lifetime of the pyrolitic graphite targets due to irradiation-induced dimensional changes

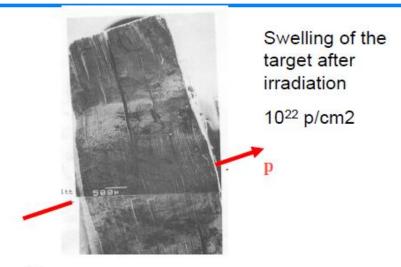
Operational parameters:

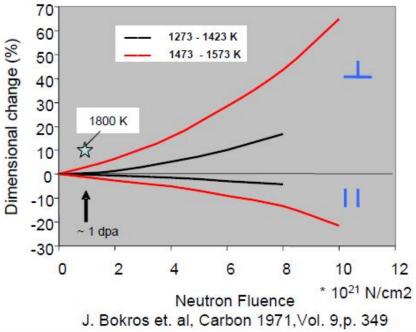
Proton current: 100 μA

Peak current density: 1000 μA/cm²

Peak temperature: 1800 K


Lifetime limits:


Proton fluence: 10²² p/cm²


Integrated beam current: 50 mAh

Irradiation-induced swelling: ~ 10 %

Irradiation damage rate: ~ 1 dpa

Dimensional changes in pyr graphite

Koike, http://ir.library.tohoku.ac.jp/re/bitstream/10097/46594/1/10.1557-JMR.1994.1899.pdf

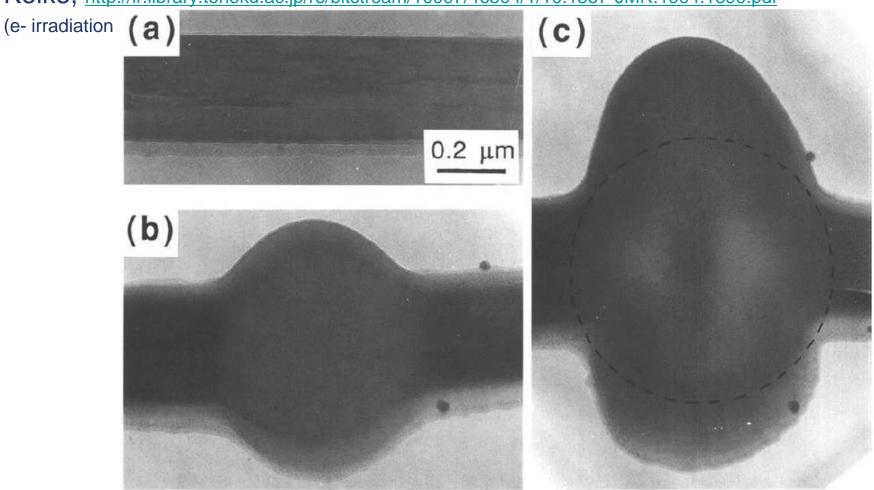
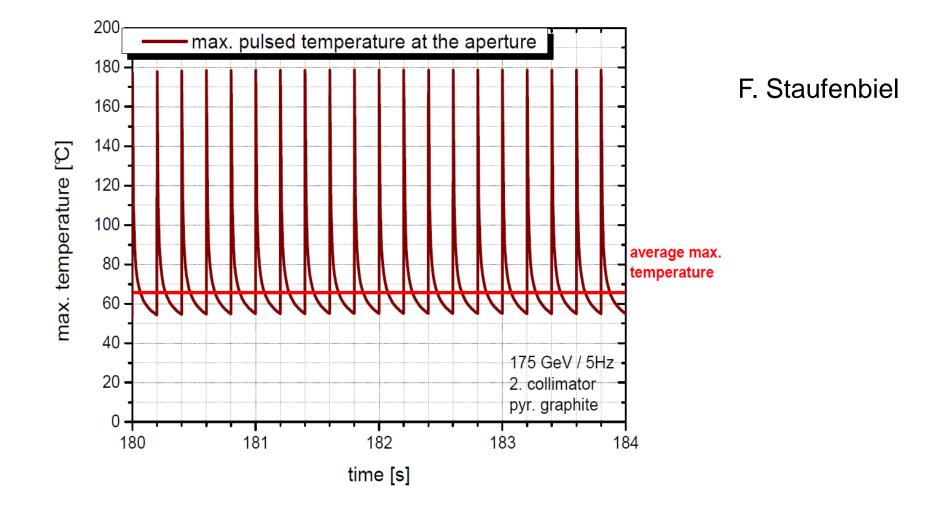
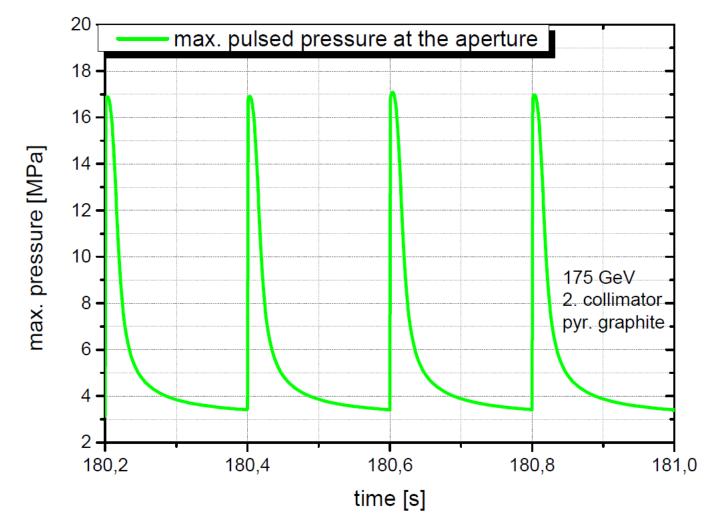




FIG. 2. Bright-field images of an HOPG strip illustrating the radical morphological changes produced by 300 keV electron irradiation at room temperature: (a) before irradiation, (b) after irradiation to 1.35 dpa, and (c) after irradiation to 5.0 dpa. The dotted circle indicates the size of the incident beam.

F. Staufenbiel