

VEP Status at Marui Galvanizing Co. Ltd/KEK

LCWS14 at Belgrade / Serbia 7th Oct. 2014

Presented by T. Saeki

V. Chouhan, K. Nii, S. Kato, T. Yamaguchi, Y. Ida, H. Hayano, M. Sawabe and H. Monjushiro

Contents

- VEP Setup for Single and 9 Cell Cavities
- VEP of Coupon Cavity
- Coupon Current Comparison in both VEPs
- Surface Study of Coupons
- VEP of 1AC3 Single Cell Cavity
- VEP of 9-Cell Cavity
- Summary
- Future Work

VEP Setups for 1 and 9 cell Cavities at Marui

VEP Setup for 1 Cell

Wind guide ducts with several small holes

Coupon Cavity

- The coupon cavity contains 6 Nb disk type coupon at beam pipes, irises and equator.
- The coupons were set to be electrically isolated from the cavity.
- The isolation allowed us to measure coupon current from individual coupon.
- The cavity is having 4 view ports also on the top iris, bottom iris and equator for light introduction and in-situ observation of wings and H₂ bubbles.

Coupon Cavity

Coupon position by red arrow

Coupon

VEP Conditions

- Two Vertical Electropolishing (VEP) experiments of a coupon cavity were performed with our unique cathode called "Ninja cathode" and with a conventional rod cathode.
- The Ninja cathode has 4 retractable wings for agitation and uniform EP over the cavity.
- Results of both the VEPs were studied.

Ninja & Rod Cathodes

Ninja cathode has 4 retractable wings.

VEP conditions for both the VEPs performed with the Ninja and rod cathodes

Sample Positions	Ninja Cathode	Rod Cathode
H ₂ SO ₄ :HF	9:1	9:1
Electrolyte Flow Direction	Bottom to Top	Bottom to Top
Flow Rate	5 L/min	5 L/min
Cathode Rotational Speed	1 rpm	Not Applicable
Applied Voltage	9-11 V	9 V
Current Density	25 mA/cm ²	25-30 mA/cm ²
Target Removal Thickness	50 μm	50 μm
EP Time	2.5 hours	2.5 hours
Cavity Surface Temperature	17.5-23 °C	24.5-27 °C

• The VEP conditions were kept similar in both the VEPs so as to compare VEP₅ results.

Coupon Current Profiles by coupon cavity

- The top iris should have a thinner viscous layer due to the gravity [1] and attack of resident H₂ bubbles [2].
- The oscillation on the top iris current was due to the cathode wings which enhanced the EP rate.
- In rod cathode many current spikes appeared in all the coupon current profiles. These might be due to attack of bubbles which damage viscous layer and enhance the EP rate.

^[1] F. Furuta et al., TUP049 SRF2013, Paris, France (2013).

^[2] S. Kato et al., TTC Meeting, Desy, Hamburg, Germany (2014).

Cavity Removal Thickness

Removal thickness was measured with ultrasonic thickness gauge.

Removal thickness was the highest at the top iris and the lowest at the bottom iris.

Optical Microscope Images

	Top Beam Pipe	Top Iris	Equator	Bottom Iris	Bottom Beam Pipe
N I N J A	To part of the state of the sta				
R O D					- 100 pm

- The top iris surface always found rougher than other positions of the cavity.
- The rod cathode enhanced surface roughness at the top iris and equator.
- The bubbles attack the surface microscopically and make rough surface.

Coupon Surface Roughness

Coupon surface roughness was measured with surface profile meter (SPM).

	2 nd VEP (Ninja)		3 rd VEP (Rod)	
Sample	Roughness Ra/Rz (µm) Before 2 nd EP	Roughness Ra/Rz (µm) After 2 nd EP	Roughness Ra/Rz (µm) Before 3 rd EP	Roughness Ra/Rz (µm) After 3 rd EP
Top BP	0.53/4.2	0.28/1.8	0.57/3.9	0.31/1.8
Top Iris	0.51/3.3	0.5/2.3	0.43/3.4	2.98/13
Equator_1	0.43/3.2	0.22/1.3	0.5/3.4	0.94/5.3
Equator_2	0.38/2.9	0.23/1.4	0.46/3.5	0.95/5.7
Bottom Iris	0.45/3.2	0.28/2.2	0.46/3.7	0.26/1.8
Bottom BP	0.39/2.7	0.27/1.6	0.52/3.7	0.24/1.6

- The top iris and equator surfaces were found rougher after VEP with the rod cathode.
- For the rod cathode electrolyte flow rate of 5 l/min might not be enough to move out bubbles quickly.
- However faster movement of bubbles causes bubbles traces on the top iris.

Cavity Irises

The top iris surface was found to be rougher with vertical traces due to H₂ bubbles.

1st VEP of 1AC3 cavity

<u>Purpose</u>

VEP of 1AC3 cavity for vertical test (1AC3 cavity is borrowed from CEA Saclay)

VEP condition

Electrolyte: H_2SO_4 : HF=9:1 (New)

Voltage: 5.0-6.0V (Power supply setting)

Time: 150min (Continuous)
Flow direction: Bottom to top

Flow rate: 5 L/min

Cathode rotation speed: 1 rpm

Current target density: 20~30mA/cm²

Tiller: 10°C (in water bath)

Cathode: Our original cathode "Ninja"

Improved cooling system is used. (Using spot-cooler and wind guide ducts with several small holes.)

Wind guide ducts with several small holes

1st VEP of 1AC3 cavity

Temperature during VEP

Bubbles during VEP

Current density, voltage during VEP

- Cavity temperature was successfully kept around 20 – 25 °C at all measurement points.
- Current density was successfully kept around 25 mA/cm².
- Voltage drop occurred in this system.
 (Power supply setting 5 6V → measured 4V)

1st VEP of 1AC3 cavity

Inner surface inspection with a digital camera and an endoscope

- •At macroscopic area, the surface became flatter and pits were disappeared.
- •At microscopic area, crystal grain like pattern was appeared.
- •Brightness was reduced little by check with eyes.

1st VEP of 1AC3 cavity

Removal thickness measurement by ultrasonic thickness gauge

Total average removal thickness: 41µm

Removal thickness of upper iris is the largest (2 - 3) times larger than other points).

1st VEP of 1AC3 cavity

Removal thickness (µm)

Top view

Right

Left

Horizontal direction (Left – Right):

Both temperature and removal thickness is almost the same.

Vertical direction (Upper – Lower):

Temperature is almost the same, but removal thickness is different.

1st VEP of 9-cell cavity

<u>Purpose</u>

The facility is made in Marui first time and try to VEP

VEP condition

Electrolyte: H₂SO₄: HF=9:1 (New) Voltage: 7-9V (Power supply setting)

Time: 90min (Continuous)
Flow direction: Bottom to top

Flow rate: 10L/min

Cathode rotation speed: 1rpm

Current target: 25mA/cm²

Cathode: Our original cathode "Ninja"

No cavity cooling system

1st VEP of 9-cell cavity

Temperature during VEP

Current density, voltage during VEP

Bubbles during VEP

- Cavity temperature became very high.
 (Around 50 °C)
- Current density was successfully kept around 20 - 25 mA/cm².
- Voltage drop occurred in this system.
 (Power supply setting 7 9V
 → measured 5 7V)

1st VEP of 9-cell cavity

Inner surface inspection by endoscope

Inner surface inspection by digital camera

5th cell lower iris

5th cell equator

5th cell – 6th cell

Rough and crystal grain like surface is appeared. One reason seems to be high cavity temperature.

1st VEP of 9-cell cavity

At 60 min

 There was no clear tendency of each parts temperature.

Each parts

Average of each cells

Removal thickness

Temperature

distribution

- Removal thickness of iris is 3 – 4 times larger than that of equator.
- 2 upper cell is larger than other cells.

Summary

- The 4 wings Ninja and the conventional rod cathodes were used for VEP of the coupon cavity.
- Inhomogeneous removal thickness was found over the cavity with both the cathodes.
- The Ninja cathode could not help to achieve homogeneous EP rate over the cavity.
- However the Ninja cathode provided smoother surface possibly due to agitation of electrolyte and wiping of H₂ bubbles from the surface.
- The single cell (1AC3) cavity was also VEPed with a target of vertical test.
- Testing of 9 cell VEP setup was successfully done by performing VEP of a 9-cell cavity.

Future Plan

VEP of Coupon Cavity

 Ninja cathode and EP parameters will be modified to achieve homogeneous EP rate in the cavity and further smooth surface.

VEP of 1AC3 Cavity

- Confirm vertical test result using this cavity.
- More parameter investigation to improve inner surface and removal thickness distribution.

VEP of 9-cell Cavity

- Making cavity cooling system.
- More parameter investigation to improve inner surface and removal thickness distribution.
- VEP of new 9-cell cavity for vertical test.

Thank You