

# SRF R&D on Qo and gradient at DESY

- ILC-HiGrade cavities and monitoring of the EXFEL production
- Optical inspections
- Studies of the cryo-cycling influence on the Qo
- CBP polishing of Nb cavities
- T-mapping
- New approach for the Second sound quench evaluation





Aliaksandr Navitski aliaksandr.navitski@desy.de











#### **European ILC-HiGrade programme**



24 cavities are added to the **EXFEL** order as a part of the **ILC-HiGrade** program:

- Initially, serve as quality control (QC) sample for the EXFEL
  - extracted regularly, ~one cavity/month: first half of cavities arrived!
  - after the normal acceptance test will be taken out of the production flow --> R&D
- > Delivered with **full treatment** but **no helium tank** 
  - -> maximize the data output from the test
- Further handling within ILC-HiGrade as feasibility study for ILC goal:
  - "Second sound" and T-mapping from the 2<sup>nd</sup> cold RF test
  - optical inspection (OBACHT) and replica

Further treatment options:

- Centrifugal Barrel Polishing (CBP)
- Local Grinding repair
- additional EP polishing
- > Eventually aim 3 world record modules from the 24 ILC-HiGrade cavities



#### Cold rf results of ILC-HiGrade cavities





- "ILC recipe" provides cavities with maximum usable gradient of ~31.9±8.2 MV/m and 34.9±4.7 MV/m after retreatment
- some achieve >40 MV/m



Aliaksandr Navitski, SRF R&D on Q0 and gradient at DESY, LCWS 2014, Belgrade

CAV00147 Test:1.2 AMTF 03/04/14 2[K] bd\_fe
 CAV00147 Test:2.1 AMTF 28/05/14 2[K] pwr

CAV00177 Test:1.1 AMTF 10/06/14 2[K] pwr

CAV00208 Test:1.1 AMTF 01/09/14 2[K] bd

### Monitoring of the EXFEL production



- Solid <u>understanding/control</u> of the industrial <u>mass-production</u> process (with 800 EXFEL +24 ILC-HiGrade cavities)
- > Clear identification of the gradient limiting factors
- > Elaboration of cavity treatment providing

at least Eacc > 35 MV/m @ >90% yield



The EXFEL production process has **provided** cavities with **35 MV/m** gradient

#### Goal:

- establish high yield at high field
- Improve further the quality control to reduce the retreatment rate

# Progress in quality assurance for industrial cavity production



**OBACHT** (for **optical scan of inner cavity surface**) is in routine and successful operation for all ILC-HiGrade and suspicious EXFEL cavities

- Quality control (-> correct QA scheme is an essential issue)
- Valuable feedback to the production
- Failure reason clarification

#### **Examples of defects:**



# Progress in quality assurance for industrial cavity production [E-



**OBACHT** (for **optical scan of inner cavity surface**) is in routine and successful operation for all ILC-HiGrade and suspicious EXFEL cavities

- Quality control (-> correct QA scheme is an essential issue)
- Valuable feedback to the production
- Failure reason clarification





production-friendly

Aliaksandr Navitski, SRF R&D on Q0 and gradient at DESY, LCWS 2014, Belgrade.

# Influence of the cooling dynamics on Qo







- $\Rightarrow$  At least 20-50% gain in Q0
- ⇒ Almost same effect for 300, 100, 15 K cycles
- ⇒ No effect from cycling <9K
- ⇒ Slow cooling rate (0.1mK/s) and low T gradient (<0.2K) required for high Q0
- ⇒ Magnetic shielding is essential
- \*N. Valles, TTC CW SRF2013

At least factor 2.5 gain in Q0

1

CD

- ⇒ Effect at cycle briefly above Tc
- ⇒ Isothermal slow cooling required
- ⇒ Expulsion of trapped flux is responsible (+\*S. Aull, SRF2013)

Cycle

 $\mathbf{3}$ 

#### Influence of the cooling dynamics on Qo









- ⇒ Significant Q0 increase (at least 50%) observed independent on surface treatment
- $\Rightarrow$  Fast cooldown is better than slow
- ⇒ Cooling rate >30 mK/s is required for passing the Tc (given only for midle of CAV)
- ⇒ Flux trapping efficiency is the main effect
- ⇒ Thermocurrents were excluded since the cavity is insulated!

\*A. Romanenko et al., JAP 115, 184903 (2014)

Time (sec)

#### Different schematic of the He filling and of the cooling

\*O. Kugeler, SRF2013





initial cooldown of cavity ⇒ Asymmetrical flow of He from one to other side;

Helium inlet used only during

1.1 K

- Large gradient over the cavity axes and across
- Temperature measured on the tank left and right



- Helium Gas Input ⇒ Symmetrical flow of He from bottom to top;
- ⇒ Gradient over the cavity axes!?
- \*N. Valles, PhD Thesis 2014, Cornell University



- $\Rightarrow$  Flow of He from bottom to top;
- ⇒ Large gradient over the cavity axes;
- Temperature measured at different points
  - Difficult to compare oranges with apples
  - "FNAL"/"DESY" comparison appropriate despite of insulated cavity at FNAL

#### First cooldowns and thermal cycles at DESY



- Q<sub>0</sub> increase observed on cavities w/o Ti tank
- >>10% Qo increase for both "slow" and "fast" cooling rates
  - -> better definition of "fast" or "slow" is required
  - -> does <u>T gradient</u> across the cavity and/or <u>duration</u> of the gradient matter rather than <u>cooling rate</u>? "Long" processing should favor better flux mobility and expulsion
- The cycling procedure should be feasible for the cryomodules

More <u>precise T control</u> and measurement of <u>T profile</u> required for better understanding

#### **Cooldowns and thermal cycles**



Initial fast cool down (fast "DESY standard"):



#### First cooldowns and thermal cycles



#### "Standard DESY" cooldown:

Cooling rate across  $T_c$ : 273 – 432 mK/s T gradient (at first transition): ~100 K NC-SC border moves up with ~ 0.5 mm/s NC-SC border crosses cavity in 2700 s T gradients across NC-SC border:

~ 80 mK/mm

#### "Slow DESY" cycling:

Cooling rate across  $T_c$ : < 1 mK/s T gradient (at first transition): few K NC-SC border moves up ~ 0.1 mm/s NC-SC border crosses cavity in 11520 s T gradients across NC-SC border: ~ 3 mK/mm

#### "Fast DESY" cycling:

Cooling rate across  $T_c$ : >100 mK/s T gradient (at first transition): few K NC-SC border moves up 10-100 mm/s or (cavity cooled almost simultaneously) NC-SC border crosses cavity in 200 (9) s T gradients: ~ 2-30 mK/mm or (no single gradient border)





<sup>\*</sup> courtesy of J. Eschke and Y. Tamashevich

#### Way to better T measurement & control



The new "**T-Mapping**" system at DESY is commissioned:

- kHz readout per sensor
- > 100 sensors along cavity





#### **Eddy-current system:**

few Hz readout per sensor

> 9 (27) sensors along cavity

precise Tc determination and T sensors calibration

#### "Cernox" T sensors:

additional T control and calibration of the T-mapping



#### Way to better T control:



Accurate control, adjustment, and understanding of the cryogenic dynamic require:



Feedback from the technic showed before is essential

# First results with the "new" technic: Fast "bottom" cooldow

Normal type of cool-down from 14 K to 3 K Cooling rate across  $T_c$ : 120-210 mK/s

T gradient (at first transition): ~3.5 K

NC-SC border moves from bottom (*E1*) to top (*E9*) with speed starting from 6 mm/s for *E1* and accelerating up to 100 mm/s for *E9*.

NC-SC border crosses the cavity in 65 -20

Temperature gradients across NC-SC bord 24 mK/mm for E1 2 mK/mm for E9





#### **Expansive cooldown**



Expansive cool-down from 14 K to 4.2 K Cooling rate across  $T_c$ : 110-140 mK/s

T gradient (at first transition): ~1.2 K

No single NC-SC border.

Different parts of the cavity cross  $T_c$ simultaneously, on average ~100  $mm/s_{\rm p}^{\rm min}$ 

Whole cavity crosses the  $T_c$  in 9 s (less then 3 s in other tests).

Temperature gradients from ~0 mK/mm to 4 mK/mm.



\* courtesy of J. Eschke and Y. Tamashevich

#### Reason for the better flux expulsion:





- Smooth NC/SC transition is rather due to T gradient and time than cooling rate
- More results coming soon (TTC 2014?)

# Centrifugal Barrel Polishing (CBP) of Nb cavities



#### How to repair cavities?

- Which kind of defects can be removed by CBP?
- How does CBP influence on cavities performance?

#### Can we replace bulk EP?

- Can CBP be used to remove Nb damaged layer (~150 μm) instead of bulk EP?
  - -> cheap, safe, "green"
  - -> no sulphur contamination?
  - ->.....
- Can CBP be integrated in the existing production flow?



The CBP machine is being commissioned based on the polishing recipes derived from best FNAL, JLAB, and previous DESY experience

# CBP of Nb cavities: OBACHT+SEM+EDX+ Replica/3D Laser profilometer analysis





⇒ Embedded polishing media is an issue

Welding seam profile

# CBP of Nb cavities: roughness and removal analysis











- ⇒ Better investigations of the removal profile required
- ⇒ Better matching of the polishing steps needed?
  - -> some <u>scratches</u> and <u>polishing media</u> still present
- ⇒ Polishing time to be reduced
- ⇒ Mechanical cavity <u>deformation</u> is an issue

# CBP experiments with a coupon cavity





\* pictures of Y. Tamashevich

- 1-cell coupon cavity
- 6 removable samples (coupons, 2 each for equator, cell side, and end tube)
- Facilitate polishing optimization:
  - --> direct measurements of the surface roughness, removal rate, removal profile
  - --> material analysis in the interesting regions

# **Profilometry of coupons**







- Amount of removed material can be directly measured with submicron resolution
- Removal profile can be directly determined by comparing 6 coupons

**Profilometry of coupons** After Step 1 14.0 12.0 10.0 17. 7µm 6.0 37**.** 0 392.6 200.0 300.0 200.0 100.0 100.0 After Step 3 6.4µm . 0 0. O 300.0 courtesy of Y. Tamashevich 200.0 2014, B

# Surface/material analysis of coupons





# Quench localization by Second sound OST signals ref. ch. 16x 20 x ~20 m/s Schematic drawing of determination of the 180° intersecting volume 270° Calculation result \* F. Schlander, PhD Thesis 2013 Aliaksandr Navitski, SRF R&D on Q0 and gradient at DESY, LCWS 2014, Belgrade

#### "Mapping" new approach the SS quench localization



#### Main ideas:

- → use information from all the OSTs
- → combination/overlap of pre-calculated "distance maps"

#### Distance map:

| -1 | -1 | -1 | -1 | -1 | -1 | -1 |
|----|----|----|----|----|----|----|
| -1 | -1 | 1  | 1  | 1  | -1 | -1 |
| 1  | 1  | 0  | 0  | 0  | 1  | -1 |
| 0  | 0  | 1  | 1  | 1  | -1 | -1 |
| 1  | 0  | -1 | -1 | -1 | -1 | -1 |

| -1 | -1 | -1 | -1 | -1 | 1 | 0  |
|----|----|----|----|----|---|----|
| -1 | -1 | 7  | 1  | 1  | 0 | 1  |
| -1 | -1 | -1 | 1  | 0  | 1 | -1 |
| -1 | -1 | 1  | 1  | 0  | 1 | -1 |
| -1 | -1 | -1 | 1  | 0  | 1 | -1 |



#### Quench map:

| -1 | -1 | -1 | -1 | -1 | -1 | -1 |
|----|----|----|----|----|----|----|
| -1 | -1 | -1 | 2  | 2  | -1 | -1 |
| -1 | -1 | -1 | 1  | 0  | 2  | -1 |
| -1 | -1 | 2  | 2  | 1  | -1 | -1 |
| -1 | -1 | -1 | -1 | -1 | -1 | -1 |

#### Easy, fast, and precise:

- No trilateration
- No manual pre-selection of channels
- Calculation of "distance maps" complex, but to be done only once.
- During and after the measurement the "distance maps" are searched, matched, and overlapped automatically
- Nice visualization of the results

Aliaksandr Navitski, SRF R&D on Q0 and gradient at DESY, LCWS 2014, Belgrade

CAV00087 12 OST

<sup>\*</sup> Y. Tamashevich et al, to be published soon, more at TTC2014?

# T-mapping vs. SS





- ⇒ Good agreement between T-mapping and SS-mapping results
- ⇒ OBACHT inspection of the quenching area coming soon

\* courtesy of Y. Tamashevich



# Thank you for your attention!

#### Acknowledgements:

- FLA/ILC group and especially Yegor Tamashevich, Alena Prudnikava, and Ricarda Laasch
- MKS 1 and MHF-sI group and especially to J. Eschke and J. Zigler
- all DESY and INFN colleagues involved in the XFEL cavity fabrication, treatment and tests
- KEK colleagues and especially to Takayuki Saeki and Shigeki Kato for help with the fabrication of the coupon cavity
- **FNAL colleagues** and especially A. Romanenko, A. Grassellino, and C. Cooper for valuable discussion

\*aliaksandr.navitski@desy.de