XFEL VERTICAL TEST RESULTS AND EXTRAPOLATION TO ILC

Nick Walker for the XFEL Cavity Analysis Team

07.10.2014 LCWS14 Belgrade

CAVITY & TEST NUMBERS

Up to 31 August 2014

	ZANON	RI	TOTAL
Number of cavities	224	183	407
Number of vertical tests	337	255	592
Tests/cavity	1.50	1.39	1.45

CAVITY TEST RATES

- All vertical tests shown (by test date)
- Avg. tests/week(since 10.13) 10
- Peak tests per week 14.3
- Average
 number of tests
 per cavity: 1.45

- All vertical tests shown (by test date)
- Avg. tests/week
 (for 2014) 10.4
- Peak tests per week 14.3
- Average
 number of tests
 per cavity: 1.46

- All vertical tests shown (by test date)
- Avg. tests/week
 (for 2014) 10.4
- Peak tests per week 14.3
- Average
 number of tests
 per cavity: 1.46

- All vertical tests shown (by test date)
- Avg. tests/week
 (for 2014) 10.4
- Peak tests per week 14.3
- Average
 number of tests
 per cavity: 1.46

ILCTDR assumed 1.25 test/cavity

XFEL USABLE FIELD

- · Usable field for XFEL is defined as the lowest of
 - MAX FIELD (i.e. vertical test max achieved)
 - $Q_0 < 10^{10}$ (Q-limited)
 - X-RAY monitors (F.E. limited)
 - top sensor ≤0.01 mGy/min (historical from TTF measurements)
 - bottom sensor ≤0.12 mGy/min (calibrated wrt top)

YIELD

- MAX FIELD
- as received
- Excluding bad tests (leaks, RF problems etc.)

YIELD

USABLE FIELD

- as received
- Excluding "bad tests" (leaks, RF problems etc.)
- RI result is more relevant for ILC (flash EP)

	Tests	Average	RMS	Yield@20	Yield@26	Yield@28
ZANON	164	25.	6.9	76%	52%	38%
RI	148	28.6	8.1	85%	70%	63%
All	312	26.7	7.7	80%	61%	50%

YIELD (RI)

- as received
- Excluding "bad tests" (leaks, RF problems etc.)

	Tests	Average	rms	Yield@28	Yield@31.5	Yield@35
Max		32.8	7.6	82%	69%	48%
Usable	148	28.6	8.1	63%	41%	18%

YIELD (RI)

- as received
- Excluding "bad tests" (leaks, RF problems etc.)
- TDR assumption:
 75% @ 28 MV/m
 with 35 MV/m avg
 (1st pass)

148 tests	Yield @ 28 MV/m	Average above 28 MV/m		
Max gradient	82%	35.7 MV/m		
Usable gradient	63%	33.4 MV/m		

Note: 148/183 cavities included (81%): what happened to the missing 35 cavities?

CAVITIES NOT INCLUDED

Failed or aborted "as received" tests	13	
First test in DB flagged as		
retreatment at RI		
retreatment at DESY	2	

Inclusion of these tests changes statistics at the ~1% level

RETREATMENT

- Original retreatment criteria was <26 MV/m
 - ~40% of cavities
- Now <20 MV/m
 - ~20% of cavities
- FE dominated
 - mostly HPR

RETREATMENT

- Original retreatment criteria was <26 MV/m
 - ~40% of cavities
- Now <20 MV/m
 - ~20% of cavities
- FE dominated
 - mostly HPR

RETREATMENT: DIRECT COMPARISON

BCP w/o 120C bake (3)

BCP w 120C bake (7)

120C bake (3)

Both vendors

A MODEL FOR ILC

RI USABLE FIELD distribution used t generated 1st pass VT results

XFEL HPR results used to generate model for (HPR) retreatment

Retreatment model applied to cavities with G<28 MV/m

ILC MODEL - RESULT

		_			Yield@31.5	Yield@35
As received	10000	28.4	8.3	61%	40%	19%
Second Pass	10000	30.9	6.4	77%	49%	24%

SOME INITIAL CONCLUSIONS

- RI (ILC recipe) results close to TDR assumptions
 - MAX FIELD 82% yield, <G>~35.7 MV/m
 - USABLE FIELD (XFEL) 61% yield <G>~33.4 MV/m
 - ILCTDR: 75% with <G> = 35 MV/m
- XFEL dominated by FE at low gradients for which simple HPR proves quite effective
- ILC projection of HPR retreatment increases UF yield 61% to 77%
 - 23% of cavities would still require further retreatment
 - projected tests per cavity = 1 + 0.4 (1st pass) + \sim 0.2 (2nd pass) + \sim 0.1 (other) \sim 1.7
- Next steps
 - Understand FE in XFEL production (on going)
 - Fold ILC projections into cost model (evaluate cost optimum)
 - Start looking at XFEL string assembly (too few stats right now)