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LCLS-II Linac 
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Physics Requirements Document: “SCRF 1.3 GHz Cryomodule,” 

LCLSII-4.1-PR-0146-R0, 4/30/2014  Original Release. 

Physics Requirements Document: “SCRF 3.9 GHz Cryomodule,” 

LCLSII-4.1-PR-0097-R0, 6/23/2014  Original Release. 

• Thirty-five 1.3 GHz 8-cavity cryomodules  

• Two 3.9 GHz 8-cavity cryomodules  

• Four cold segments (L0, L1, L2 and L3) which are separated by 

warm beamline sections.  
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Parameters for the Accelerator 

 

Table 1. LCLS-II Electron Beam Parameters 

Parameter Nominal Range Units 

Final electron energy 4 2-4.14 GeV 

Electron bunch charge 0.1 0.01-0.3 nC 

Bunch repetition rate 0.62 0-0.93 MHz 

Average linac current 62 1-300 μA 

Average beam power 0.25 ≤1.2 MW 

emittance 0.45 0.2-0.7 μm 

Peak current 1 0.5-1.5 kA 

Bunch length 8.3 0.6-52 μm 

Usable bunch length 50  % 

Compression factor 85 25-150  

Slice energy spread 0.5 0.15-1.5 MeV 

                                Beam stability goals 

Energy, rms <0.01  % 

Peak Current <5  % 

Bunch arrival time <20  fs 

beam stability (x, y) <10  % 

 

LCLS-II DOE Status Review, Sept. 30 – Oct. 2, 2014 

From John Galayda,  

DOE review,  

1 Oct 2014  
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LCLS-II cryomodules: top level parameters 
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Cryomodule (CM) Parameters  Symbol nom.value Units 

Cavity operating temperature Tcryo 2 K 

# 9-cell cavities per cryomodule (1.3 GHz) Ncav 8 - 

# installed cryomodules (1.3 GHz) NCM 35  - 

# 3.9-GHz cavities per 3.9 GHz CM - 8 - 

# 3.9 installed GHz cryomodules - 2 - 

# installed 1.3 GHz cryomodules in L0 NCM0 1 - 

# installed 1.3 GHz cryomodules in L1 NCM1 2 - 

# installed 3.9-GHz cryomodules as linearizer NCMLH 2 - 

# installed cryomodules in L2 NCM2 12 - 

# installed cryomodules in L3 NCM3 20 - 
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Cryomodule Cavity Requirements (LCLSII-4.1-PR-0146) 

LCLS-II DOE Status Review, Sept. 30 – Oct. 2, 2014 

… cavities will be capable of operating at 16 MV/m CW with 

a Q0 = 2.7e10 at 2K….  

• average of 1/Q0 < 1 / 2.7e10 

• matches anticipated cryoplant heat-load capacity 

• (the acceptable variation of Q0 is large  min Q0 > 1.5e10) 

 

The individual cavities will be qualified to operate up to a 

voltage of at least 18 MV/m CW  

• 15% ‘degradation’ margin Cryomodule / Vertical Test 

(CM/VT) included 

• (10% reported by DESY  first 7 XFEL CM – Linac 2014) 

 

From Marc Ross,  

DOE review,  

1 Oct 2014  
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The Cryogenic System 
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Modifications for individual liquid level control at each 

cryomodule and for fast cool-down  

Peterson - LCLS-II Cryomodule Design - 7 Oct 2014 8 
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LCLS-II Cryomodule (CM) Cryogenic Circuits 
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A. 2.2 K subcooled supply  

B. Gas return pipe (GRP) 

C. Low temperature intercept supply  

D. Low temperature intercept return  

E. High temperature shield supply  

F. High temperature shield return  

G. 2-phase pipe  

H. Warm-up/cool-down line  

 

Circuit (Line) 

Operating Parameters A B C D E F G H 

Pressure, [bar] 3 0.031 3 2.8 3.7 2.7 0.031 3 

Temperature, K 2.4 2.0 4.5 5.5 35 55 2.0 2.0 
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Cryomodule image from 3-D model 
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CM, Feed Cap and Bypass and Vertical Transferline 
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Horizontal Bypass 

Vertical 

Transferline 

Total transferline length is ~ 510 m 
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ILC Type 3+ CM Modifications for LCLS-II (components) 
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Component design – leverage existing designs  

• Cavities – XFEL identical 

• Helium vessel – XFEL-like 

• HOM coupler – XFEL-like or –identical 

• Magnetic shielding – increased from XFEL/ILC to maintain high Q0 

• Tuner – XFEL-like end-lever style 

• Magnet – Fermilab/KEK design split quadrupole 

• BPM – DESY button-style with modified feedthrough 

• Coupler – XFEL-like (TTF3) modified for higher QL and 7 kW CW 

Concerns based on global experience 

• Tuner motor and piezo lifetime: adding access ports 

• Maintain high Q0 by minimizing flux trapping:  new constraints on 

cool-down rate through transition temperature   

Functional Requirements Document: “1.3 GHz Superconducting RF  

Cryomodule,” LCLSII-4.5-FR-0053-R0, 6/23/2014  Original Release. 
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ILC Type 3+ CM Modifications for LCLS-II (cryo-mech) 
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Cryo-mechanical design – increased pipe sizes 

• Larger chimney pipe from helium vessel to 2-phase pipe  

• Larger 2-phase pipe (~100 mm OD) for low velocity vapor flow  

Both high heat load & 0.5% slope of the SLAC tunnel require  

• Closed-ended 2-phase pipe (line G) providing separate 2 K liquid 

levels in each cryomodule  

• 2 K JT (liquid supply) valve on each cryomodule  

For fast cool-down, cool one cryomodule at a time  

• Closed-ended warm-up/cool-down manifold (line H)  

• Cool-down/warm-up valve on each cryomodule 

Cost savings: Omit 5 K thermal shield 

• Simplification since large dynamic heat at 2 K makes such a 

thermal shield of marginal value  

• Retain 5 K intercepts on input coupler  
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Q0 preservation imposes some new requirements 
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High Q0 is required  

• We assume Q0 = 2.7E10 in our design  

Magnetic shielding to keep < 5 mGauss  

• New features such as active external coils  

Cool-down rate  

• High rate of cool-down appears to be necessary  

• As much as 2 – 3 Kelvin/minute through 9.2 K transition 

temperature  

• Key may be high delta-T within Nb to “sweep out” magnetic 

flux  

• We have some concepts for fast cooling  

• Uniform cooling of bimetallic joints  



1.3 GHz LCLS-II Cryomodule  
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• Vacuum vessel 

• Interconnection Bellows 

• Power coupler warm parts 

• Cryomodule alignment supports 

• Cryomodule instrumentation ports 

• Power coupler pumping line 



1.3 GHz CM in LCLS-II SLAC Tunnel with Slope ~0.5% 
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SLAC tunnel (~ 3 meters x 3 meters) results in 

extremely limited space  

Peterson - LCLS-II Cryomodule Design - 7 Oct 2014 17 

(inches) 
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LCLS-II 1.3 GHz Cryomodule Vacuum Vessel 
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o Tube OD- 38” (965.2mm),tube Wall- .375” (9.52mm),  

 ASTM A516 STEEL, Vacuum vessel length- 11400mm 

o Final machining: MC port and cold mass SLD support surfaces 

o A critical component for Q0 preservation, must be demagnetized  
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LCLS-II dressed cavity  
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Ti-stainless transition 

• Dual inlet ports 

• Explosion-bonded Ti-SS  

transition on 2-phase 

nozzle. Stainless 2-phase 

pipes and bellows.   

• End lever tuner with 

integrated piezos   



LCLS-II, 1.3 GHz Cryomodules connection 
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~300mm 



1.3GHz CM. Current Leads & Splittable Quad Magnet 
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Conduction cooled 

 intercept to 2-phase He pipe for Quadrupole 

CL-SSR1 Style, 50A, quantity-6 (+2 tubes for instrumentation), 

 2-thermal intercepts (5K &50K)  

BPM between magnet and last cavity – moves magnet further from cavity 
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1.3 GHz (and 3.9 GHz) CM Thermal and Hydraulic Design 
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LCLS-II CM is a modified  TESLA/XFEL CM for CW mode operation  

• Thermal shields, intercept flow, and cryogenic supply and return flow in 

series through a string of cryomodules 

Heat load range  

• 80 to 150 W per cryomodule at 2 K depending on local HOM deposition 

and cavity Q0 

• A cavity may see as much as 25 W   

• Dynamic heating at 2.0 K is about 92% of the 2.0 K cryomodule heat 

and about 78% of the total cryogenic cooling requirement  

Two-phase pipe is 100 mm diameter 

• 0.5% slope  or 6 cm elevation difference over 12 m  

• 100 mm diameter two-phase pipe is nearly full at one end, nearly 

empty at the opposite end  

Cryomodule (CM) thermal and hydraulic design is well advanced  

• Steady-state flows and upset conditions with venting analyses  

• Incorporating features for faster cool-down (high dT/dx on the cavity)  
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Cryogenic System Heat Load Sources 
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Static 

• Supports (conduction) 
• Thermal radiation 
• Magnet current leads 
• Input coupler 
• Cryogenic distribution system (CDS) 

Dynamic 

• RF load 
• Magnet current leads 
• Electrical heaters 
• Input coupler 
• HOM coupler cables 
• HOM and wakefield heating 
• Other sources (dark current, tube bellows, etc) 
 

Document that summarizes heat loads estimate that were received from various experts on their respective 

elements or subsystems - LCLS-II Cryogenic Heat Load , Note Number: LCLSII-4.5-EN-0179 



Best estimate of linac heat loads  

(no uncertainty factors included)  
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From:  SLAC Engineering Note:  LCLS-II Cryogenic Heat Load 

Note Number:  LCLSII-4.5-EN-0179  

About 80 W per cryomodule at 2.0 K  



Linac design heat loads  

(uncertainty factors included)  
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Above table includes uncertainty factors of:   

1.3 for all static heat loads  

1.1 for all dynamic heat loads.   

From:  SLAC Engineering Note:  LCLS-II Cryogenic Heat Load 

Note Number:  LCLSII-4.5-EN-0179  



Temperatures and Pressures  

for Cryogenic System Design  
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From LCLScryoHeat-30July2014-100percent.xlsx 
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Simplified Heat Load Diagram 
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System Pressure Drops  
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Pressure drops must be analyzed for each helium flow path 

to ensure that steady-state operation matches system 

design and that non-steady conditions (cool-down, 

emergency venting, warm-up) are properly handled  

• Input variables include line size,  

• Allowable temperature rise,  

• Allowable pressure drop  

• Heat load (temperature rise and heat load  mass flow)  

• Maximum allowable pressure for emergency venting  

• Matching cryomodule/distribution system to the cryogenic 

plant  
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Cryo-mechanical safety and code compliance  
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Pressure vessels, piping, ODH 

• Helium vessel around the cavity is the pressure vessel  

• Piping must all meet pressure piping standards  

• Fermilab ES&H manual section 5000 includes cryogenic system 

safety, pressure vessel standards, SRF dressed cavity standard, 

vacuum vessel standard, oxygen deficiency hazards (ODH), etc.   

• SLAC, Fermilab, and JLab will agree upon a common set of 

standards based on these and those at the partner labs  

- Baseline is to use FNAL safety requirements 

Seismic analysis  

• Fermilab is presently doing mechanical analyses of a cryomodule 

assembly under various acceleration and/or oscillatory modes as 

required by SLAC  

• These are also needed for design for shipping 
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Additional necessary engineering documents 
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Fermilab-style safety engineering notes  

• Dressed cavity helium vessels 
- Demonstrates compliance with pressure vessel rules   

• Piping engineering note 
- Demonstrates compliance with pressure piping rules   

• Vacuum vessel engineering note 
- Demonstrates compliance with vacuum vessel rules   

Piping mechanical loads and stability  

• Static piping pressure loads, support structure stresses, and interconnect 

stability  

• Dynamic analyses for shipping and seismic issues  

Various other documents verifying design and interfaces  

Most of these specific documents for LCLS-II cryomodule are not yet 

started  

• But similar documents exist for our previous 1.3 GHz and 3.9 GHz cryomodules 

and will serve as drafts for these  

• Strong similarities among piping, vessel, and structural features mean most 

work for these documents has been done  
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Cryomodule Design / Production Model 
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LCLS-II SRF linac closely based on  European XFEL / ILC / TESLA design 

• Under development ~ 20 years with > 1000 cavities to be made and tested 

(incl. 800 for E-XFEL – completed 2015) 

FNAL has been working with these designs for ~10 years in ILC context  

• Two cryomodules built and tested: CM1 and CM2 

• 80 9-cell cavities procured 

• >300 bare 9-cell cavity tests (vertical test) 

• >30 dressed 9-cell cavity tests (horizontal test) 

FNAL is responsible for the CM design, working closely with JLab & SLAC 

FNAL and JLab produce two streams of identical 1.3 GHz CM, starting with 

two prototypes 

• Tightly coordinated activity among partner labs 

• Common procedures, test reporting, travelers, etc. (within infrastructure limits)  

• Taking advantage of Jlab cryomodule production experience 

FNAL produces two 3.9 GHz CM’s 

• Based on a four-cavity 3.9 GHz linearizer cryomodule built for DESY/FLASH 

Cooperation and assistance from DESY/XFEL extremely beneficial 
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Conclusions for cryomodule design 
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Design effort and duration are minimized 

• Deviations from previous TESLA-style cryomodules are necessary, 

but structure and form are very much the TESLA concept with 

minimal modifications 

• Component design effort and technical risk minimized by using 

existing designs with minimal modification 

• Using prototypes to advance and confirm design concepts early 

Substantial Fermilab and partner lab experience and capabilities 

• Emphasizing integrated system design  

Rapid design progress 

• LCLS-II inclusion of superconducting RF structures began just one 

year ago 
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Conclusion for cryogenic system heat loads  
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• Cryomodule design, cryogenic distribution, and cryogenic 

plant must be designed as one cryogenic system.   

• Detailed analyses and a complete roll-up of heat loads 

for the cryomodules and cryogenic distribution have been 

completed.   

• Associated supply and return helium conditions have 

been coordinated with Jlab cryogenic plant designers for 

a consistent system design.  

• This presentation highlighted some aspects of the 

cryomodule and cryogenic distribution design and 

analyses including steady-state operational heat loads.   
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Backup slides, additional information 

Peterson - LCLS-II Cryomodule Design - 7 Oct 2014 35 



TESLA-style cryomodules compared - 1 
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TESLA-style cryomodules compared - 2 
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1.3 GHz Cryomodule Layout, Magnet and BPM  
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o Vacuum Vessel & Bellows 

o Coldmass supports 

o Cold mass 

• HGR Pipe with bearings 

• Cavity string 

 Cavity with lever tuner 

 Splittable quad (conduction 

cooled)- V. Kashikhin 

 BPM (Reentrant or Button) 

 Gate valve 

 Invar rod 

 



Cryomodule pipe pressures  
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Helium inventory 
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Each dressed cavity – 27 liquid liters  

8 dressed cavities – 214 liquid liters  

Pipes – 134 liquid liters equivalent mass  

One cryomodule total – 348 liquid liters equivalent  

LCLS-II cryomodules – 13,000 liquid liters equivalent 
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Recent Revisions for Heat Load Reduction 
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In order to reduce the cryogenic system heat load at 2 Kelvin to a 

total within the capacity of the planned Jlab cryogenic plant (4.0 

kW at 2 K), the project made the following revisions to 

requirements:   

• 100% of cavities are powered so that average gradient may be 

reduced (reduces assumed gradient from 16 MV/m to 15 MV/m and 

reduces dynamic heating by about 4.5 W per CM)  

• Beam current is reduced from 0.3 mA to 0.1 mA (reduces HOM 

loads at 2 Kelvin to 1/3 of 0.3 mA value)  

- Additional reduction via copper coating of inter-cavity bellows 

• Above two changes are the major ones and reduce estimated heat 

load for each cryomodule by about 10 Watts  

Resulting total heat load at 2.0 K including uncertainty factors is 

3.54 kW 
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CM Static Heat Load 

Peterson - LCLS-II Cryomodule Design - 7 Oct 2014 

Heat Load, [W] 
High temperature 

thermal shield 

Low temperature 

thermal intercepts 

2.0 K 

Circuit 

Cryomodule static   100 12 6 

Basis of estimate: 

• Carlo Pagani, 2nd ILC Acc. Workshop, 8/16/2005 (TTF measurements at DESY)  

• X.L. Wang, et. al., TTC 2011  (CMTB measurements at DESY)  

• B. Petersen et. al., XFEL predicted based on measurements and analyses 

• N. Ohuchi, S1-G-report(Thermal Test).doc  (S1-Global measurements at KEK)  
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Cryo Distribution System Static Heat Load Budget  
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Heat Load, [W] 
High temperature 

thermal shield 

Low temperature 

thermal intercepts 

2.0 K 

Circuit 

CDS 3,400 260 220 

Basis of estimate: 

• NML measurements at Fermilab 

• Riddone, G. et. al., ”Results from the Qualification of the Three Pre-Series 

Test Cells for the LHC Cryogenic Distribution Line” 

• Gruehagen, et. al., “Long, Bellows-Free Vertical Helium Transfer Lines for 

the LHC Cryogenic System” 

• Parente, C., et. al., “The Local Helium Compound Transfer Lines for the 

Large Hadron Collider Cryogenic System” 

• FEA of the current design 

Details  LCLS-II Cryogenic Heat Load , Note Number: LCLSII-4.5-EN-0179 



2 K heat in first few cryomodules 

From LCLScryoHeat-30July2014-100percent.xlsx 
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94% 
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Heat loads and cryogenic plant size 
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Heat loads are carefully evaluated  

• Input from various groups including beam dynamics, RF cavity 

performance, input couplers, cryomodule design, magnets and 

current leads, distribution system  

• These are tabulated as “best estimates” meaning no margin added.  

These are the expected values  

Then also an uncertainty factor must be applied  

• Heat load x uncertainty factor = maximum anticipated  

• Uncertainty factor evaluation should be quantitatively based on 

measurements and statistics  

These then provide input to the cryogenic plant design and sizing  

• Temperature and pressure constraints agreed upon by various 

cryogenic system designers provides additional input  

• Combinations of heat loads (e.g., static only, static +RF, static + RF 

+ beam) provide various “modes” for cryogenic plant operation  
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GRP Temperature Profile (illustrates some of our work) 

Peterson - LCLS-II Cryomodule Design - 7 Oct 2014 



Peterson - LCLS-II Cryomodule Design - 7 Oct 2014 48 



Peterson - LCLS-II Cryomodule Design - 7 Oct 2014 49 



Cool-down requirements 

We must cool slowly through from 300 K until most thermal 

contraction is complete.  Cool-down rates (dT/dy and dT/dt) 

based on DESY measurements and analysis, in order to limit 

stresses on the support posts, must be limited in the Gas Return 

Pipe (GRP)  

• GRP vertical gradient is < 15 K 

• GRP longitudinal gradient is < 50 K 

• GRP cool-down rate is 40 K/hr  

May start fast cool-down at 80 K or colder  

• “Fast” means 2 – 3 K/minute (“slow” < 0.5 K/minute)  

• Since thermal shield is ~35 K – 55 K, in the following analysis use 

40 K delta-T at 3 K/minute = 13 minutes for transition from thermal 

shield temperature to below the niobium 9.2 K critical temperature  
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LCLS-II Cryomodule Volumes 
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• Fast cool-down of one cryomodule implies replacing 200 liters of helium 

volume as quickly as possible.  

• From the previous slide, we want to replace those 200 liters, starting at 40 K, 

with helium at ~ 5 K in 13 minutes.   

• Flow into the cryomodule at 15 liters/minute = 31 grams/sec liquid helium in 

liquefier mode. (~2 liters/min for each helium vessel) 

• 31 g/s sets cool-down valve size 
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Cryogenic plant capacity  
(Cryo Plant Performance Sheet from Dana Arenius, August 5, 2014) 
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In liquefier mode (supplying 4.5 K, receiving back warm 

helium gas), 31 grams/sec is no problem.   

• However, 4 cryomodules would require 4 x 31 = 124 gr/sec, 

about the limit of cryogenic plant production  

• L3 has 20 cryomodules cooled in parallel  

- 31 grams/sec per cryomodule would not be available 

• Need to focus cooling on a few cryomodules  
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Conclusion for cool-down concept  
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Required cool-down rate is feasible  

• “Fast” cool-down is not impossibly fast in a cryomodule  

• Cryogenic plant can provide the flow for a few cryomodules at 

a time 

• Capillary tubes and other pipes can carry the flow  

• Note that line H (cool-down / warm-up line) exists only in the 

cryomodules and is eliminated from the distribution system.  

Implementation . . .   

• Isolate Line H (cool-down / warm-up line) for each 

cryomodule and provide each cryomodule with its own cool-

down valve, supplied from Line A (helium supply) as shown in 

slide 7 and in 3-D model images 



Tuner access ports  

• Cornell ERL injector cryomodule successfully incorporated access ports  

• Allow access to tuner motor, drive mechanism, and piezos without pulling 

the cavity string out of cryostat.  

• Fermilab tuner designed to allow access to critical components via access ports  

• Ports must be on opposite side from input couplers, which is the wall side in the 

SLAC tunnel  

• Ports available during initial CMTS tests  

• Ports would not enable access to XFEL end-lever tuner  

• Definitely include access in prototype cryomodules  

• These will incorporate Fermilab tuner  

• Mitigates risk of problems with new tuner design  

• Include access ports in production cryomodule?  

• Decision based on cost / risk analysis following initial tuner tests in HTS.   

• Assemble a mechanical mock-up including thermal shield and MLI to check 

access port utility.  
Peterson - LCLS-II Cryomodule Design - 7 Oct 2014 54 



55 

1.3 GHz Prototype Cryomodule. Back View 
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• Tuner motor access ports 

• JT Valve and cool-down valve with access port 
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1.3 GHz CM. Tuner & JT Valve access Ports 
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o Tuner port, Flange type ISO, ID=12” 

o Valve Weld Access Port for final orbital welding for 

 connection to JT Valve and Cool-down Valve 
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Draft instrumentation list – prototype cryomodule 
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Instrumentation notes 
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List is being updated with some changes  

• Replacing most CERNOX sensors with diodes for cost 

savings  

• Reviewing other needs  

- Beam loss monitors  

- Helium vessel heater design  

• Production cryomodule instrumentation will be a reduced set  
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XFEL, 3.9 GHz Cryomodule 
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• 8-3.9GHz Cavities (4 cavites-

3.8GHz-FNAL) 

• Power couplers from both sides 

• 2-coldmass supports 

• Interconnection Bellows (not 

sliding) 

• 38” OD vacuum vessel pipe  
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3.9 GHz CM DESY/FLASH experience 
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• 4-cavity 3.9 GHz pulsed-operation linearizer cryomodule designed and 

built at FNAL, installed at DESY/FLASH 

• Cavities routinely operate (pulsed) at 18.9 to 19.7 MV/m 

• Cavities tested at FNAL both bare (vertical) and dressed (horizontal) 

• Cryomodule first tested at DESY CMTB prior to installation in FLASH 

• Successful assembly 

• Successful transatlantic shipment 

• Some rework at DESY 

• Longitudinal realignment 

• Instrumentation terminations 

• Inter-lab effort and coordination 

• Engineering Notes 

• Welding certification, esp. He vessels 

• Operational Readiness Clearance 

• Transatlantic CM transport  

 

      



LCLS-II 3.9GHz Cryomodule, (F10014857 in Team 

Center) 
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3.9 GHz Cryomodule. Layout 
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5525 850 

Beam 

• 8- 3.9GHz cavities 

• MC distance 607.9 mm (COLD)  

4761 
625 

280 

GV 

Cold Mass Support 

Fix 

Cold Mass Support  

Sld. Sliding 

~ 700mm 


