

Infrastructure Updates

For LCLS-II Cryomodule Construction

Ed Daly 07-OCT-2014

Acknowledgements

- Special Thanks T. Peterson, T. Arkan, J. Leibfritz, R. Stanek, A. McEwen
- JLab, FNAL and SLAC colleagues
- XFEL Project Teams at DESY & CEA/Saclay

Outline

- Collaboration
- Production Strategy
- CM Production Preparations
 - FNAL & JLab
- Summary

Fermilab is leading the cryomodule design effort

- Extensive experience with TESLA-style CM design and assembly
- Basis: 3-D model & drawings of similar ILC CMs (e.g. Type III+) Jefferson Lab and Cornell are partners in R&D, design reviews, costing, and production
 - Cornell and JLab both have valuable CW CM design experience
 - Jefferson Lab sharing half the 1.3 GHz production
 - Recent 12 GeV Upgrade production experience
- Argonne Lab is also participating in cryostat design

Strategy – One Design, Two Production Lines

- Designs for Prototype and Production CMs (aim to satisfy PR and CM FRS)
- <u>Identical Prototypes</u> utilize as much existing hardware as possible to reduce schedule risk and reduce overall cost while achieving the same performance as the production CMs
- Identical Production Designs utilize as much of the DESY/XFEL design as practically possible to reduce schedule risk and reduce overall cost
 - FNAL produces 16 CMs; JLab produces 17 CMs
- Identical Parts Received at Partner Labs
 - Well-developed drawing packages, clear requirements and specifications
 - Concurrent reviews within LCLS-II project
 - Procurement activities lead technical contacts at Jlab/FNAL/SLAC work together during all phases

Identical Tooling Interfaces

- Interfaces between CM hardware and tooling are identical
 - Avoid adding custom features to CM
- Adapt non-CM hardware interfaces to Lab-specific tooling
- Equivalent Processes yielding Equivalent Performance
 - Recognize that some tools are different at each lab (e.g. HPR, vertical testing systems, vacuum leak checking equipment, etc.)
 - Monitor key process variables in consistent fashion (e.g. samples to verify etch rates)

Leverage XFEL's Existing CM Experience

XFEL Production - Four cavities per test stand

CM ready for testing (can test 3 CMs at once) LCWS14-SRF-WG, October 7th, 2014

Tunnel construction is underway

Production of CMs is currently ramping up!

Start operations in April 2017, see http://www.xfel.eu/project/construction_milestones/

Opportunity to Learn from CEA Colleagues

PHASE 3 : PROTOTYPING

- Check :
- ✓ Infrastructures
- ✓ Tools

CEA team trained

Production of CMs is currently ramping up!

C. Madec | SRF13-THIOA02 | 26/09/2013 | PAGE 13

LCWS14-SRF-WG, October 7th, 2014

Leverage FNAL's ILC-style CM Production Development

Cavity String Assembly

Cold Mass Assembly LCWS14-SRF-WG, October 7th, 2014

Insertion of Cold Mass into Cryostat Assembly

Cryomodule Ready for Transport On-site Courtesy of T. Arkan, FNAL

A. McEwen

LCLS-II Cavity/Cryomodule Process

FNAL Capabilities and Infrastructure: Cavity String, Cold Mass, Cryomodule Assembly

Cavity String Assembly Clean Room LCWS14-SRF-WG, October 7th, 2014

Cavity String Assembly

Cold Mass Assembly

Courtesy of R. Stanek & T. Arkan, FNAL

Cryomodule Transport

Final Assembly

FNAL Capabilities and Infrastructure: Cavity Testing, Tuning

ILC/XFEL Cavity Tuning Machine

Vertical Test Stand

Vertical Test Stands 1, 2 and 3

9-cell TESLAstyle cavity

LCWS14-SRF-WG, October 7th, 2014

T. Arkan

Capabilities and Infrastructure: FNAL 1.3 GHz CM Ass'y

LCWS14-SRF-WG, October 7th, 2014

T. Arkan

CAF-ICB during LCLS-II Production

FNAL – Minor Infrastructure Upgrades Ensuring CM Throughput

- Cleanroom LN2 boiled-off inert gas volume and flow capacity is increased
- Setup new cold end coupler assembly station in MP9 cleanroom (WS0)
- Add a second rail system in MP9 (WS2)
- Duplicate some tooling:
 - Procure one more full set of cleanroom cavity support posts to be used (WS2)
 - Procure one more red spreader bar fixture to be used to transport GRHP assemblies from storage to production floor
- Modify some tooling for LCLS-II cryomodule design
- Additional vacuum and leak check equipment: Vacuum pumps, leak detectors

T. Arkan

FNAL – CMTS1 Layout

FNAL CMTS1 – Construction on Track

 3-D model of cave, 1.3 CM, RF WG and cryo distribution is well developed

- 1st two layers (walls, labyrinths and penetrations) are complete
- Next steps paint blocks and epoxy coat floor, followed by elec. & lighting

LCWS14-SRF-WG, October 7th, 2014

CMTS1 Updates

Multi-use CM Test Stand (LCLS II and eventually PIP II)

Cryoplant (new) is fully commissioned

• 500 W at 2K

Design is in progress

- FRS is approved (LCLSII-4.5-FR-0246-R0)
- Builds off the NML and DESY experiences
- Floor layout established
- Cryogenic distribution TL will be out for bid in early September
- LLRF will be based on NML and HTS (CW) systems

Construction has already begun

- Building cave walls
- Ordering parts (chillers, racks, controls...)
- RF power sources will be supplied by SLAC
- Feed Cap and End Cap supplied by BARC (India) design is complete
 - Production Readiness Review in September 2014

Funding is in place (75% FNAL, 25% LCLS II)

• OHEP is very supportive of this work

Plan to have CMTS1 fully commissioned in October 2015

SRF Facilities at JLab

CM Production Preparations at JLab

Adapt existing infrastructure and facilities to accommodate LCLS-II components, sub-assemblies, final assembly and testing

Define processes required for component handling, assembly and testing

Develop test plans – key activities are cavity qualification from vendors and cryomodule acceptance testing

Employ SRF QA Tools used for 12 GeV 100 MV CW cryomodules (aka C100) production and SNS production

JLab CM Assembly Area Work Flow

JLab Proposed Layout for LCLS-II CM Production

JLab Infrastructure, Tooling & Facilities

Vertical Testing of Bare/Dressed Cavities

- Capacity 4 cavities per week
- Planned rate 2 cavities per week
- Cavity String, Cold Mass and CM Assembly Tools
 - Capacity 2 CM per month
 - Planned rate 1 CM per month

Horizontal Testing Bench – supports Qo R&D and production efforts

- Capacity 1 test per month
- Planned rate ~ 1 cavity per CM during production

Cryomodule Testing Facility (CMTF)

Capacity & planned rate – 1 CM per ~ 6 weeks

JLab Vertical Test Area / Horizontal Test Bench

VTA

- Up to four test stands available for production acceptance testing capable of testing one cavity at a time
- Utilize same cavity hardware (test flanges, feedthroughs, etc.) provided by project to cavity suppliers
- Small modifications required to existing supports
- Ensure low magnetic field environment ("magnetic hygiene")
 HTB
 - Plan to conduct five tests during production effort to provide feedback on cavity assembly process or for production development activities
 - Modifications to top hat for XFEL-style FPC and small modifications to existing supports

JLab Facilities Improvements: Assembly Tools

Functional requirements for tooling are well-defined

JLab tooling FRS (LCLSII-4.6-FR-0282) is in review/approval process

Main Cavity Tools

- Clean room tooling* small fixtures for coupler installation, flange alignment, VTA testing hardware
- Cavity Handling Cages*
- Cavity Processing Tool Improvements (e.g. HPR, Heat Treatment Furnace, Horizontal EP)
- Two sets of carriages for cavity string
- Cavity Handling and Storage Equipment

Main Cold Mass and Cryomodule Assembly Tools

- Cold Mass Spreader Bar* Supports / Positions Cold Mass for cavity string attachment
- Cold Mass Installation into Vacuum Tank
- Vacuum Tank Supports
- Spreader Bar* Lifts Cryomodule
- Shipping Frame & End Caps*

Utilizing Existing DESY/FNAL Designs As-Is

JLab Cavity Handling and Storage Tooling

LCWS14-SRF-WG, October 7th, 2014

JLab Cavity String Assembly in Clean Room

- "Lollipop" supports for each cavity
- TBD for SC magnet and bpm
- Use mobile rail system rather than rail-in-floor used at DESY, CEA/Saclay and FNAL
- Transfer to CM assembly rails for cold mass assembly

LCLS-II Cavity String on JLab-style Rails

JLab Cold Mass / VV Assembly

- "Lollipop" supports for each cavity
- TBD for SC magnet and BPM
- Two-rail system to transfer cavity string onto GHRP
- Considering use of two-rail system to transfer cold mass into vacuum vessel
- Crane access in high-bay for shipping

LCLS-II Cold Mass with FNAL Tooling above JLab-style Rails (Phase II Assembly)

JLab Facilities Improvements : Testing in CMTF

Draft FRS for CMTF in Progress (LCLSII-4.6-FR-0285); Similar to FNAL CMTS1 FRS

Ability to run 8 cavities simultaneously

End Cans (2 sets to support CM production rate)

- Engineering Specification JL0012682S in Review/Approval Process
- · Connects CM to CTF valve box via u-tubes
- · Interfaces for valves, LL and diodes to monitor and control helium flow/inventory
- · Provides reliefs for primary circuit, shield circuit and insulating vacuum space

HPRF

- Receive 1.3 GHz 3.8 kW Solid-State Amplifiers (SSAs)
- Procure Circulators
- Modify Waveguide and Interlocks
- Run line power to SSA/Circulators
- Provide controls in CMTF Control Room

LLRF

- RF Instrumentation (arc detectors, IR sensors, etc.)
- Provide digital controls in CMTF Control Room
- Software development

Cryogenic Test Facility (CTF)

- Improve return side piping to reduce overall pressure drop from CMTF
- Ensure recovery system (pumping, compression) provides base pressure of 0.031 atm (23 torr) in the CM helium bath
- Improve/replace aging instrumentation such as arc cells, flow meters and temperature sensors

JLab CMTF

- HPRF system suitable for individual cavity testing or 8 cavities in short duration steady state
- TBD system for testing SC magnet need PS & leads info
- Magnetic shielding encloses testing volume reducing external fields to less than 50 mG
- Cryogenic capacity for testing up to 8 cavities in CW mode
- End Caps specific for LCLS-II CM testing
 - Interface to CM piping and existing junction box using u-tubes

JLab CMTF -Evaluating Layout for HPRF and WG Routing

SSA Location

WG routed thru mezzanine

Approach is to site HPRF on third floor, route into cave through mezzanine and connect to CM on ground floor

Electrical and Water

JLab CMTF Conceptual Layout

End view of CM with bayonets connecting JB, HX and BB

CMTF Process & Instrument Diagram in Progress

JLab CMTF End Can – Preliminary Design

LCWS14-SRF-WG, October 7th, 2014

BAYONET BOX 3D Model

END CAP 3D Model

JLab HTB modified for LCLS-II Testing

- Horizontal testing capability for one dressed 9-cell cavity with tuner with inner magnetic shield
- RF power via coax cable or FPC
- Cryogenic supply evaluating CEBAF and LCLS-II End Caps
- Magnetic Environment
 - Magnetically shielded test cave < 50 mG
 - Outer mag shield just inside vacuum tank

Modifications

- Tophat area to accept coax or FPC and instrumentation
- Include LL standpipe for LL control
- Design flex lines to connect internal piping to end caps

Six Month Look Ahead

- Cryomodule Design Continue collaboration with SLAC, FNAL and XFEL colleagues on cryomodule production planning
- R&D Support ramp-up of cavity testing for high Qo and the prototype cryomodule activities
- Infrastructure Design
 - Complete designs for JLab-specific assembly tooling and fixtures
 - Complete designs for End Cans (FNAL & JLab)
 - Complete designs for upgrading CMTF controls, instrumentation and RF hardware (FNAL & JLab)
- Procurements
 - Start procurements for cavity and cryomodule assembly tooling and fixtures (FNAL & JLab)
 - Start end can procurements (JLab)
 - Start procurement of CMTF LLRF and HPRF components (FNAL & JLab)

Summary

- Strong collaboration with XFEL on Infrastructure Development
- Goal for production of CMs at JLab/FNAL is "identical design, identical parts, equivalent processes to yield equivalent performance"
 - Infrastructure development supports this goal
- Overall Plan for Cryomodule Design & Production
 - R&D / Design Modifications Complete
 - Infrastructure / Tooling
 - Prototype CMs (2 units)
 - Start of Production 1.3 GHz CMs (33 units)
 - Rates of 1 CM per 6 8 weeks in current plans
 - Start of Installation at SLAC

FY14/15

FY14/15

FY15/16

FY16

FY17