FCC Accelerator Studies

Daniel Schulte for the FCC team LCWS 214, Belgrade October 2014

European Strategy

Approved by CERN council, ESFRI roadmap Identified four highest priorities:

- Highest priority is exploitation of the LHC including luminosity upgrades
- Europe should be able to propose an ambitious project at CERN after the LHC
 - Either high energy proton collider (FCChh)
 - Or high energy linear collider (CLIC)
- Europe welcomes Japan to make a proposal to host ILC
- Long baseline neutrino facility

FCC Overview

FCC-hh hadron collider with 100TeV proton cms energy

~16 T \Rightarrow 100 TeV pp in 100 km

~20 T ⇒ 100 TeV pp in 80 km

FCC-ee a lepton collider as a potential intermediate step

FCC-eh lepton hadron option

International collaboration

Site studies for Geneva area

CDR for EU strategy update in 2018

FCC-hh

A baseline parameter list exists: http://indico.cern.ch/event/282344/material/3/

A somewhat conservative first approach, will now make a conceptual design and optimise the parameters and look at alternative parameters

	LHC	HL-LHC	FCC-hh
Cms energy [TeV]	14	14	100
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	5	5
Bunch distance [ns]	25	25	25
Background events/bx	27	135	170
Bunch length [cm]	7.5	7.5	8

- Two main experiments sharing the beam-beam tuneshift
 - Two reserve experimental areas not contributing to tuneshift
- 80% of circumference filled with bunches

Preliminary Layout

First layout developed (different sizes under investigation)

- ⇒ Collider ring design (lattice/hardware design)
- ⇒ Site studies
- ⇒ Injector studies
- ⇒ Machine detector interface
- ⇒ Input for lepton option

Will need iterations

FCC-hh Challenges: Magnets

Arc dipoles are the main cost and parameter driver

Baseline is Nb₃Sn at 16T

HTS at 20T also to be studied as alternative

Coil sketch of a 15 T magnet with grading, E. Todesco

Field level is a challenge but many additional questions:

- Aperture
- Field quality

Different design choices (e.g. slanted solenoids) should be explored

Goal is to develop prototypes in all regions, US has world-leading expertise

Beam Parameters

	LHC	HL-LHC	HE-LHC	FCC-hh
Bunch charge [10 ¹¹]	1.15	2.2	1	1 (0.2)
Norm. emitt. [µm]	3.75	2.5	1.38	2.2(0.44)
IP beta-function [m]	0.55	0.15	0.35	1.1
IP beam size [μm]	16.7	7.1	5.2	6.8 (3)
RMS bunch length [cm]	7.55	7.55	7.55	8

- Values in brackets for 5ns spacing
- Same values for 16T and 20T design

$$\mathcal{L} \propto oldsymbol{\xi} rac{1}{eta_y} N n_b f_r$$

- Beam-beam tuneshift for two IP 0.01
- Beta-function at IP scaled with sqrt(E) from one LHC insertion line design with 0.4m (some safety margin)

Synchrotron Radiation

At 100 TeV even protons radiate significantly

Total power of 5 MW (LHC 7kW) ⇒ Needs to be cooled away

Equivalent to 30W/m /beam in the arcs

 LHC <0.2W/m, total heat load 1W/m

Critical energy 4.3keV, close to B-factory

Protons loose energy

- ⇒ They are damped
- ⇒ Emittance improves with time
- Typical transverse damping time 1 hour

LHC-Type Beam Pipe Design

Current ambitious goal beam aperture: 2x13mm

magnet aperture: 2x20mm

Space for shielding: 7mm

Most of the power will be cooled at the beam screen, i.e. at its temperature

A part is going into the magnets, i.e. cooled at 2-4K

Power for Cooling

Better use only some temperatures in order to maintain good vacuum <20, 40K-60K, 100K-120K, >190K

Interaction Region and Final Focus Design

Two design being investigated:

- $L^* = 46m / 38m$ (how much is needed?)
- $\beta^* = 0.8 \text{m} / 0.3 \text{m} \text{ (goal < 1.1 m)}$

It is easier to obtain small betafunctions with shorter L*

Will have a tendency to reduce L*

Need to understand detector requirements as soon as possible

Many issues need to be addressed

- Magnet performance
- Radiation effects
- Space constraints from experiments
- Beam-beam effects and mitigation
- ...

Machine Protection and Friends

- >8GJ kinetic energy per beam
 - Airbus A380 at 720km/h
 - 24 times larger than in LHC at 14TeV
 - Can melt 12t of copper
 - Or drill a 300m long hole
 - ⇒ Machine protection
- Also small loss is important
 - E.g. beam-gas scattering, non-linear dynamics
 - Can quench arc magnets
 - Background for the experiments
 - Activation of the machine
 - ⇒ Collimation system

Machine Protection and Friends II

- Total power of background events 100kW per experiment (a car engine)
- Already a problem in LHC and HL-LHC (heating, lifetime)
- ⇒ Improved shielding required

More Issues

- Lattice design/optimisation, choice of working point, dynamic aperture, ...
- Impact and mitigation of magnet imperfections
- Beam current limitations, impedances, electron cloud, ...
- Beam-beam effects (head-on and parasitic), crossing angle and potential compensation
- Availability
- Hardware components
 - Collimators
 - Crab cavities or other beam-beam devices?
 - Feedback
 - Shilding
 - ...
- Cost
 - Most issues will be pushed when this reduces cost

FCC-ee

Parameter	Z	W	Н	t	LEP2
E (GeV)	45	80	120	175	104
I (mA)	1400	152	30	7	4
No. bunches	16'700	4'490	1'330	98	4
β* _{x/y} (mm)	500 / 1	500 / 1	500 / 1	1000 / 1	1500 / 50
ε_{x} (nm)/ ε_{y} (pm)	29/60	3.3/7	1/2	2/2	30-50/~250
$\sigma_{x}(\mu m)/\sigma_{y}(nm)$	120/250	40/84	22/45	45/45	250/3500
ξ _y	0.03	0.06	0.09	0.09	0.07
L (10 ³⁴ cm ⁻² s ⁻¹)	28	12	6.0	1.8	0.012

Four experiments foreseen, luminosity given is per experiment

$$L = \frac{f k N^2}{4\pi\sigma_x \sigma_y} F H \qquad \Box \qquad L \mu \frac{P_{SR}}{E^3} \frac{X_y}{D_y^*} \qquad \Box \qquad L \propto \frac{P_{SR}}{E^{1.8}} \frac{1}{\beta_y^*}$$

Luminosity Lifetime

Large particle energy loss in IPs and limited energy acceptance (2%) cause limited lifetime

- Radiative Bhabha scattering is proportional to luminosity
- Beamstrahlung as in linear colliders

Need continuous injection (top-up)

FCC-ee Beam Dynamics Challenges

Energy bandwidth of the experimental insertion with small beta-function is challenging
Goal is 2%

Significant synchrotron radiation produced in experimental insertion, which can be important background

Other issues

- High beam current at low energies
- Polarisation for low energies
- Integration with FCC-hh layout
- •

SC RF System

- □ RF system requirements are characterized by two different regimes.
 - $_{\circ}$ High gradients for H and $t\bar{t}$ up to ~11 GV.
 - High beam loading with currents of ~1.5 A at the Z pole.
- □ The RF system must be distributed over the ring to minimize the energy excursions (~4.5% energy loss @ 175 GeV).
 - \circ Optics errors driven by energy offsets, effect on η .
- □ Aiming for SC RF cavities with gradients of ~20 MV/m.
- □ RF frequency of 400 or 800 MHz (current baseline).
 - Nano-beam / crab waist favors lower frequency, e.g. 400 MHz.
- □ Conversion efficiency (wall plug to RF power) is critical. Aiming for 75% or higher → R&D!
 - An important item for the FCC-ee power budget.~65% was achieved for LEP2.

J. Wenninger

Proposed FCC Timeline

Conclusion

- The studies toward a high energy hadron collider have been launched in a strong international collaboration
 - Technological challenges must be addressed
 - The high field magnets
 - Large beam power and energy
 - ...
 - A site next to CERN is being investigated
 - Theoretical and experimental beam studies are required
 - Have the largest test facility ever
- As a potential intermediate step FCC-ee is investigated
 - Based largely on well known technology
 - With ambitious luminosity goals

Reserve

Collimation

Vacuum Pump

Gun solenoid

protons

Setup at the Tevatron, court.

of G. Stancari

LHC-type solution but other solutions should be investigated

- hollow beam as collimator
- crystals to guide particles
- renewable collimators

lectures 20

4336 Superconducting sclenoid

ectrons

2690

FCC-he

- Tentative design choice: beam parameters as available from hh and ee
 - Max. e[±] beam current at each energy determined by 50 MW SR limit.
 - 1 physics interaction point, optimization at each energy
- Could consider linac-ring design

collider parameters	e [±] scenarios			protons	
species	e [±] (polarized)	e ±	e ±	p	
beam energy [GeV]	80	120	175	50000	
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.3	1.2	0.15		
bunch intensity [10 ¹¹]	0.7	0.46	1.4	1.0	
#bunches per beam	4490	1360	98	10600	
beam current [mA]	152	30	6.6	500	
σ _{x,y} * [micron]	4.5, 2.3				

FCC-ee vs. Linear Colliders

Expectations after Long Shutdown 1 (2015)

- Cms energy 13 TeV
- Bunch spacing 25 ns
- Expected maximum luminosity: 1.6 x 10³⁴ cm⁻² s⁻¹ ± 20%
 - Limited by inner triplet heat load limit, due to collisions debris
- Other conditions:
 - Similar turn around time
 - Similar machine availability
 - $-\beta^* \le 0.5 \text{m} \text{ (was } 0.6 \text{ m in } 2012)$
 - Using new injector beam production scheme (BCMS), resulting in brighter beams.

F. Bordry

	Number of bunches	_	Transverse emittance	Peak Iuminosity		Int. yearly luminosity
25 ns BCMS	2508	1.15 × 10 ¹¹	1.9 µm	1.6×10 ³⁴ cm ⁻² s ⁻¹	~43	~40-45 fb ⁻¹

The HL-LHC Project

Goal is to obtain about 3 - 4 fb⁻¹/day (250 to 300 fb⁻¹/year)

Many improvements on the injector chain

- Linac 4 PS booster
- PS
- SPS

Many improvements on the LHC ring

- New IR-quads Nb₃Sn (inner triplets)
- New 11 T Nb₃Sn (short) dipoles
- Collimation upgrade
- Cryogenics upgrade
- Crab Cavities
- Cold powering
- Machine protection
- ...

Example of International Collaboration

F. Bordry

Baseline layout of HL-LHC IR region

with national laboratories but also involving industrial firms

LHC schedule beyond LS1

LS2 starting in 2018 (July)

=> 18 months + 3 months BC

LS3 LHC: starting in 2023

=> 30 months + 3 months BC

Injectors: in 2024

=> 13 months + 3 months BC

LHC and HL-LHC

c) ... Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. ...

Future Project at CERN

d) ...to propose an ambitious **post-LHC accelerator project at CERN** by the time of the next Strategy update...

... CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines. These design studies should be coupled to a vigorous accelerator **R&D** programme, including high-field magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide.

HFM - FCC-hh

1000 LHC@6.5TeV/beam B=7.76 T = 80% of Ic YBC0 Bil Tape Plane YBC0: Parallel to tape plane, 4.2 K YBC0: Parallel to tape plane, 4.2 K W=2212: Round wire, 4.2 K Nb3Sn: High Energy Physics, 4.2 K Nb-Ti, 1.9 K RRP Nb_Sn 100 Nb-Ti, 1.9 K RRP Nb_Sn 2212 Nb-Ti (LHC) 1.9 K Applied Field (T)

HGA - CLIC

Copper Coating

FCC-hh Challenges II

Optics and beam dynamics

 IR design, dynamic aperture studies, SC magnet field quality, beambeam, e-cloud, resistive wall, feedback systems design, luminosity levelling, emittance control, ...

High synchrotron radiation load on beam pipe

Up to 30 W/m/aperture in arcs, total of ~5 MW

Machine protection, collimation etc.

- >8GJ stored in each beam (24x LHC at 14TeV, 747-100 at 800km/h)
- Collimation against background and arc magnet quench
- 100kW of hadrons produced in each IP
- Stored energy in magnets will be huge (O(180GJ))

Injection system

