

Strong Coupling Determination from Eventshape Distributions

André H. Hoang University of Vienna

Collaboration with: D. Kolodrubetz, V. Mateu, I. Stewart

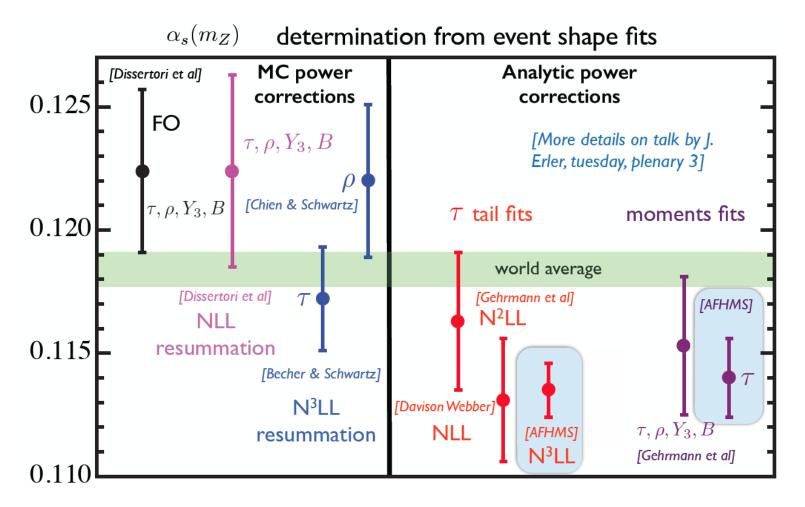
International Workshop on Future Linear Colliders Belgrade, October 5-10, 2014

Outline

- Motivation & Introduction
- Factorization & Log resummation at N³LL order
- Singular vs. Non-singular corrections
- Power Corrections
- Fits & Final result
- Conclusions & Outlook

Motivation

Eventshape analyses with analytic power corrections consistently get lower values for the strong coupling.



C-Parameter Definition

$$\begin{array}{ll} \text{linearized} & \Theta^{\alpha\beta} = \frac{1}{\sum_i |\vec{p_i}|} \sum_i \frac{p_i^\alpha p_i^\beta}{|\vec{p_i}|} & \text{with eigenvalues} & \frac{\lambda_{1,2,3}}{\lambda_1 + \lambda_2 + \lambda_3 = 1} \end{array}$$

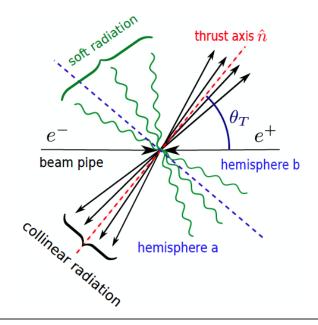
$$\lambda_{1,2,3}$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

$$C = 3(\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3) = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$$

IR and collinear safe

- Double sum
- Does not require minimization



C-Parameter Definition

linearized momentum tensor

$$\Theta^{\alpha\beta} = \frac{1}{\sum_{i} |\vec{p_i}|} \sum_{i} \frac{p_i^{\alpha} p_i^{\beta}}{|\vec{p_i}|}$$

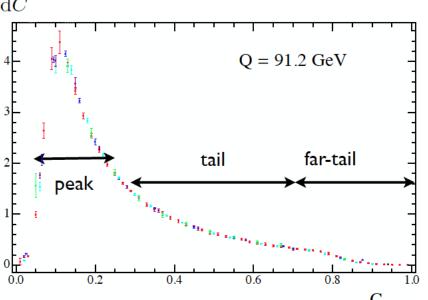
with eigenvalues

$$\lambda_{1,2,3}$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

$$C = 3(\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3) = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$$

IR and collinear safe



Continuous transition from 2-jet to 3-jet, ... multi-jet events

dijet $C \sim 0$ three jets $C \sim 0.75$ spherical $C \sim 1$

Resummation of Large Logarithms

Event shapes are not inclusive quantities

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{dC}} = -\frac{2\alpha_s}{3\pi} \frac{1}{C} \left(3 + 4\log\frac{C}{6} + \dots \right)$$

- Large logarithms at small C
- Fixed-order pert. theory not valid

One has to reorganize the expansion by considering $\alpha_s \log \frac{C}{6} \sim \mathcal{O}(1)$

Counting more clear in the exponent of cumulant

$$\Sigma(C_c) \equiv \int_0^{C_c} dC \frac{1}{\sigma_0} \frac{d\sigma}{dC}$$

$$\begin{split} \log \Sigma(C_c) = & \alpha_s (\log^2 C_c + \log C_c + 1) \\ & \alpha_s^2 (\log^3 C_c + \log^2 C_c + \log C_c + 1) \\ & \alpha_s^3 (\log^4 C_c + \log^3 C_c + \log^2 C_c + \log C_c + 1) \\ & \alpha_s^4 (\log^5 C_c + \log^4 C_c + \log^3 C_c + \log^2 C_c + \log C_c + 1) \\ & \vdots \\ & \square \\ \text{Chien, Schwartz]} \end{split}$$

[Abbate, Fickinger, Hoang, VM, Stewart]

[Hoang, Kolodrubetz, VM, Stewart]

State of the art

Resummation of Large Logarithms

Event shapes are not inclusive quantities

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{dC}} = -\frac{2\alpha_s}{3\pi} \frac{1}{C} \left(3 + 4\log\frac{C}{6} + \dots \right)$$

- Large logarithms at small C
- Fixed-order pert. theory not valid

One has to reorganize the expansion by considering $\alpha_s \log \frac{C}{6} \sim \mathcal{O}(1)$

Counting more clear in the exponent of cumulant

$$\Sigma(C_c) \equiv \int_0^{C_c} dC \frac{1}{\sigma_0} \frac{d\sigma}{dC}$$

$$\log \Sigma(C_c) = \alpha_s (\log^2 C_c + \log C_c + 1)$$

$$\alpha_s^2 (\log^3 C_c + \log^2 C_c + \log C_c + 1)$$

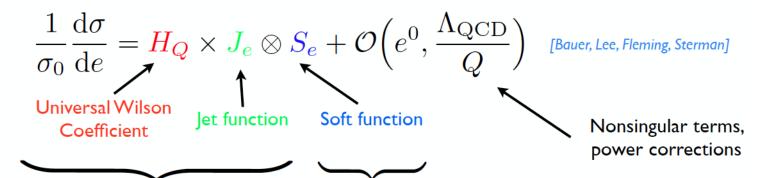
$$\alpha_s^3 (\log^4 C_c + \log^3 C_c + \log^2 C_c + \log C_c + 1)$$

$$\alpha_s^4 (\log^5 C_c + \log^4 C_c + \log^3 C_c + \log^2 C_c + \log C_c + 1)$$
[Hoang,VM, Schwartz, Stewart]
[Becher, Schwartz]
[Becher, Schwartz]
[Chien, Schwartz]
[Chien, Schwartz]

[Abbate, Fickinger, Hoang, VM, Stewart] [Hoang, Kolodrubetz, VM, Stewart]

State of the art

Factorization Theorem (singular terms)



Calculable in perturbation theory

Perturbative and nonperturbative components

Leading power correction comes from soft function

$$S_e = \hat{S}_e \otimes F_e$$
 [Hoang & Stewart] $d\sigma = \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}e} \otimes F_e$ [Poong & Stewart] $d\sigma = \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}e} \otimes F_e$ [VM, Thaler, Stewart]

Hadron mass effects taken into account, but no time to discuss them

Renormalization Group Evolution

large logs

hard scale

 $\mu_H \sim Q$ $\log^n \left(\frac{Q}{\mu}\right)$

The hierarchy among the scales depends on the position on the spectrum

jet scale

$$\mu_J \sim Q\sqrt{C/6}$$
 $\log^n\left(\frac{Q^2C}{6\mu^2}\right)$

$$\log^n \left(\frac{Q^2 C}{6\mu^2} \right)$$

$$\mu_S \sim Q C/6$$

$$\log^n\left(\frac{QC}{6\mu}\right)$$

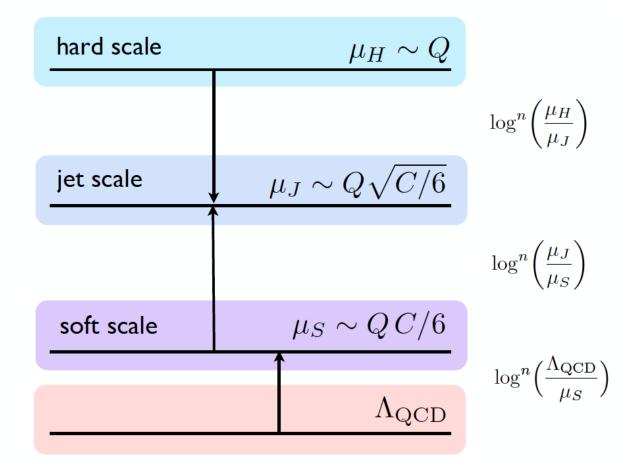
$$\Lambda_{
m QCD}$$

$$\log^n \left(\frac{6\Lambda_{\rm QCD}}{QC} \right)$$

Use profile function to describe the whole distribution

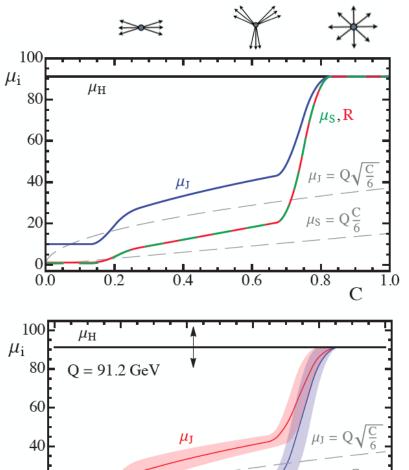
Renormalization Group Evolution

The hierarchy among the scales depends on the position on the spectrum



Renormalization Group Evolution

parameter	default value	range of values	100
μ_0	$1.1\mathrm{GeV}$	1 to 1.3 GeV	$\mu_{ m i}$
R_0	$0.7\mathrm{GeV}$	0.6 to 0.9 GeV	80
n_0	12	10 to 16	(1)
n_1	25	22 to 28	60
t_2	0.67	0.64 to 0.7	40
t_s	0.83	0.8 to 0.86	
r	0.33	0.26 to 0.38	20
e_J	0	-0.5 to 0.5	(
e_H	1	0.5 to 2.0	(
n_s	0	-1, 0, 1	10
$\Gamma_3^{ m cusp}$	1553.06	-1553.06 to $+4659.18$	$\mu_{\rm i}^{10}$
s_2	-43.2	-44.2 to -42.2	8
j_3	0	-3000 to +3000	6
s_3	0	-500 to +500	· ·
$\epsilon_{2,\mathrm{low}}$	0	-1, 0, 1	4
$\epsilon_{2,\mathrm{high}}$	0	-1, 0, 1	2
$\epsilon_{3,\mathrm{low}}$	0	-1, 0, 1	_
$\epsilon_{3, \mathrm{high}}$	0	-1, 0, 1	
	μ_0 R_0 n_0 n_1 t_2 t_s r e_J e_H n_s Γ_3^{cusp} s_2 j_3 s_3 $\epsilon_{2,\text{low}}$ $\epsilon_{2,\text{high}}$ $\epsilon_{3,\text{low}}$	μ_0 1.1 GeV R_0 0.7 GeV n_0 12 n_1 25 t_2 0.67 t_s 0.83 r 0.33 e_J 0 e_H 1 n_s 0 Γ_3^{cusp} 1553.06 s_2 -43.2 j_3 0 s_3 0 $\epsilon_{2,\text{high}}$ 0 $\epsilon_{3,\text{low}}$ 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$



0.6

0.8

0.4

0.2

Perturbation Theory Input

 $H(Q,\mu)$ Hard function known at 3 loops

 $J_n(s,\mu)$ Jet function known at two loops Running known at three loops

ame as thrust

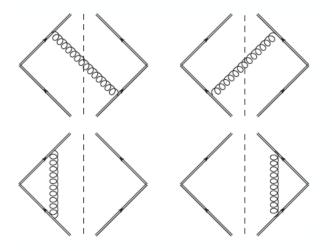
Soft function known analytically at one loop, numerically at two loops Running known at three loops

Fixed-order predictions known at three loops --> 3-loop non-log jet and soft function corr. still unknown

Mass corrections known at N²LL and two loops —> w.i.p., future update My talk on thursday

FS QED corrections known at N³LL --> Future update planned

Soft Function Computation



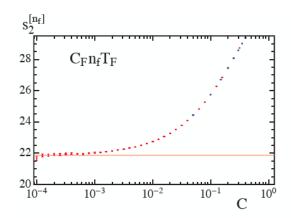
[Kolodrubetz, Hoang, VM, Stewart]

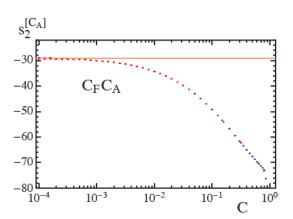
Analytic computation of soft function at 1-loop

$$S_e^{1-\text{loop}}(\ell) = \frac{2 \alpha_s C_F e^{\epsilon \gamma_E}}{\mu \pi \Gamma(1-\epsilon)} \left(\frac{\ell}{\mu}\right)^{-1-2\epsilon} I_e(\epsilon)$$

universal formula for all event shapes

$$I_{\tau}(\epsilon) = \frac{1}{\epsilon}$$
 $I_{\widetilde{C}}(\epsilon) = \frac{1}{2} \frac{\Gamma(\epsilon)^2}{\Gamma(2\epsilon)}$

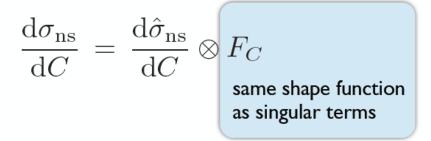


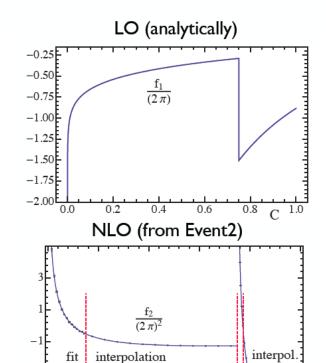


Numerical determination at 2-loops using Event2

Kinematic Power Corrections ("Non-Singular")

$$\frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}C} = \frac{\frac{\mathrm{d}\hat{\sigma}_{\mathrm{full}}^{\mathrm{FO}}}{\mathrm{d}C} - \frac{\mathrm{d}\hat{\sigma}_{s}^{\mathrm{FO}}}{\mathrm{d}C}}{\mathrm{SCET \ with}}$$
 full FO SCET with fixed scales





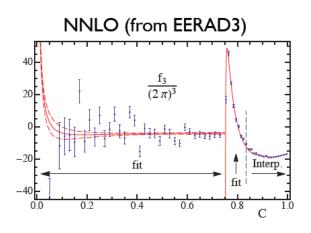
0.4

0.6

0.8

C

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}C} = \frac{\alpha_s(Q)}{2\pi} f_1(C) + \left(\frac{\alpha_s(Q)}{2\pi}\right)^2 f_2(C) + \left(\frac{\alpha_s(Q)}{2\pi}\right)^3 f_3(C) + \dots$$



Non-Perturbative Power Corrections (OPE Region)

For
$$e \gg \frac{\Lambda_{\rm QCD}}{Q}$$

For $e\gg \frac{\Lambda_{\rm QCD}}{Q}$ Shape function can be expanded in the tail

$$F_e(\ell) \simeq \delta(\ell) - \Omega_1^{\rm e} \delta'(\ell)$$

$$\frac{d\sigma}{de} = \frac{d\hat{\sigma}}{de} - \frac{\Omega_1}{Q} \frac{d}{de} \frac{d\hat{\sigma}}{de} \simeq \frac{d\hat{\sigma}}{de} \left(e - \frac{\Omega_1}{Q} \right) + \mathcal{O} \left[\left(\frac{\Lambda_{\text{QCD}}}{Qe} \right)^2 \right]$$

Universality:

$$\Omega_1^e = c_e \, \Omega_1^\rho$$

Leading power corrections proportional to each other, calculable coefficient

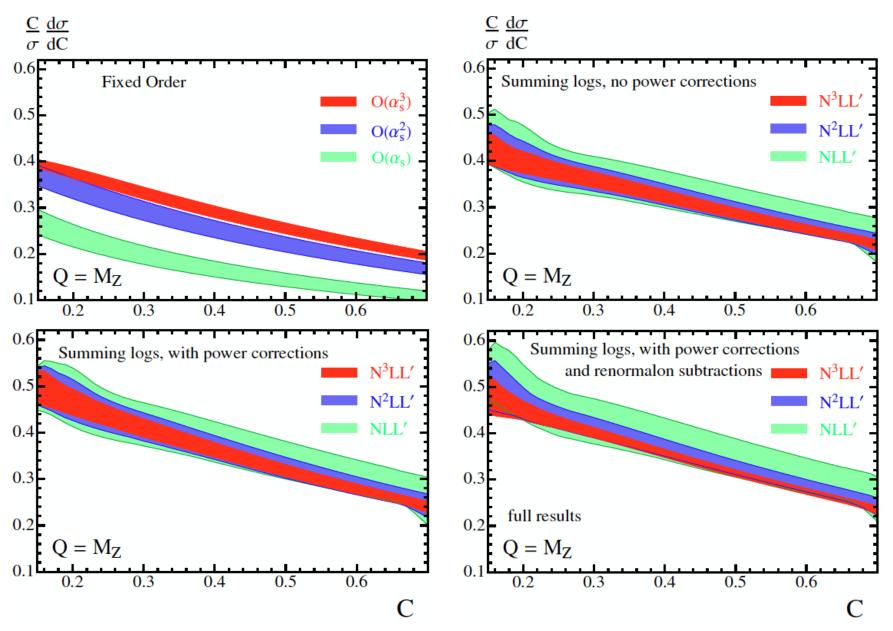
Hadron mass effect break this relation [VM, Stewart, Thaler]

No time to discuss this in detail

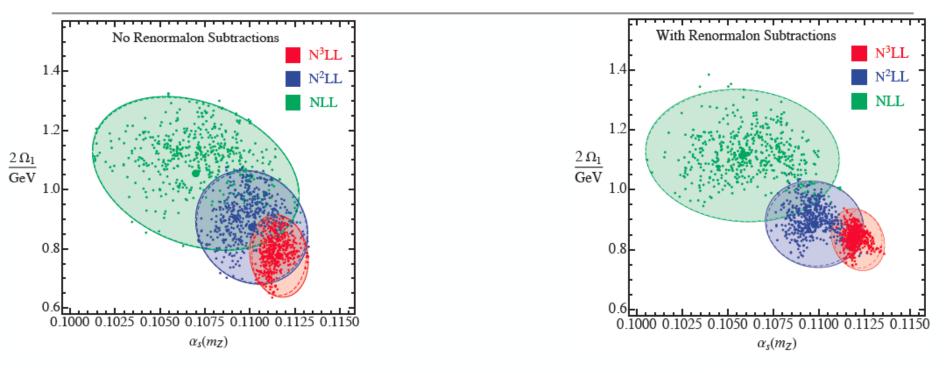
We define the gap scheme for Ω_1^e in which it is renormalon-free

No time to discuss this in detail

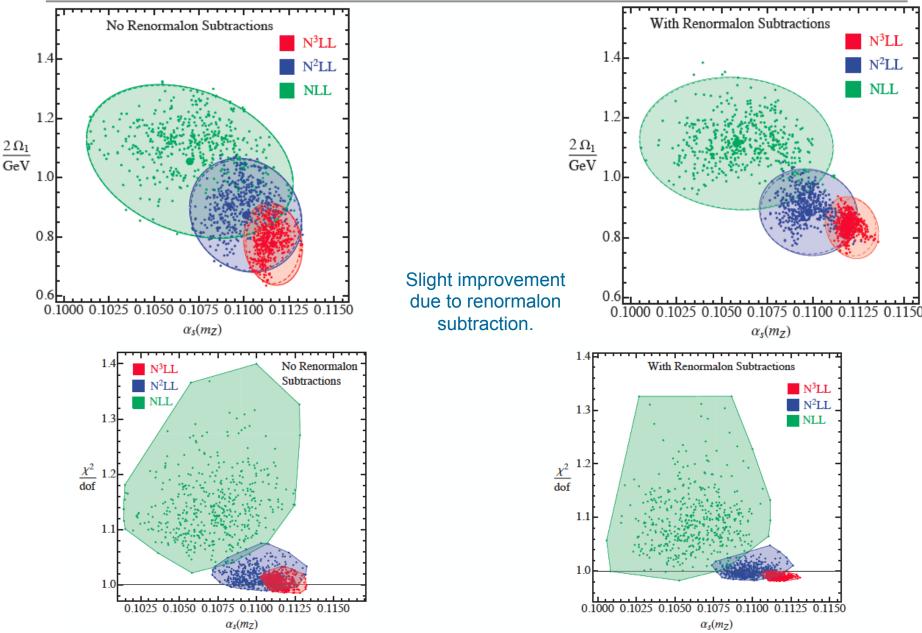
Convergence

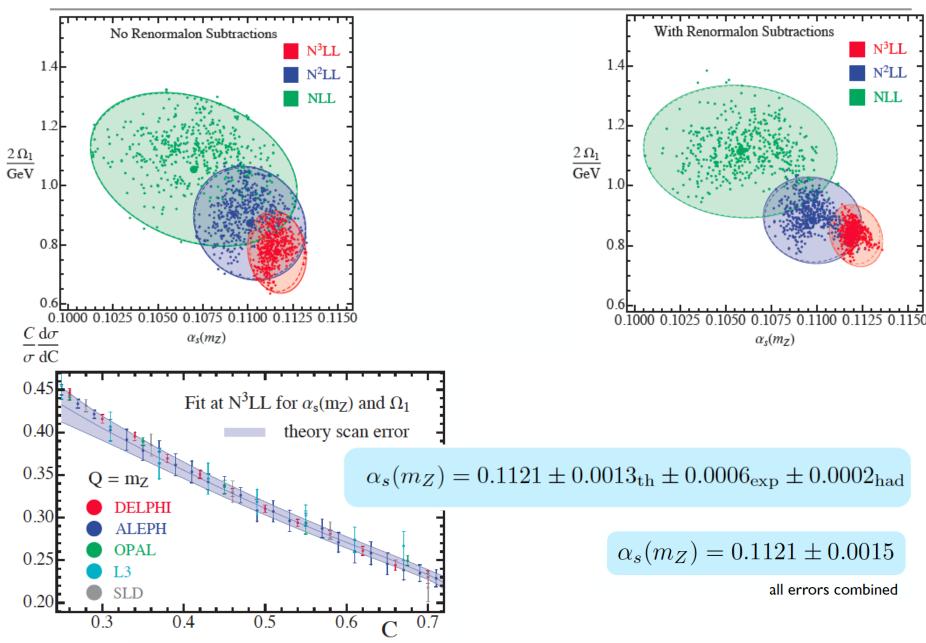


	parameter	default value	range of values	100
_	μ_0	$1.1\mathrm{GeV}$	1 to 1.3 GeV	U;
	R_0	$0.7\mathrm{GeV}$	0.6 to 0.9 GeV	80 - H
	n_0	12	10 to 16	$\mu_{\rm S}, {\bf I}$
tio	n_1	25	22 to 28	60
ria	t_2	0.67	0.64 to 0.7	$\mu_{\rm J}$ $\mu_{\rm J} = Q$
8	t_s	0.83	0.8 to 0.86	$20 \qquad \qquad \mu_{S} = Q$
scale variation	r	0.33	0.26 to 0.38	$\mu_{S} = Q$
SC	e_J	0	-0.5 to 0.5	0
	e_H	1	0.5 to 2.0	0.0 0.2 0.4 0.6 0.8
	n_s	0	-1, 0, 1	100
ns	$\Gamma_3^{ m cusp}$	1553.06	-1553.06 to +4659.18	μ_{i}^{100}
Š	s_2	-43.2	-44.2 to -42.2	80 - Q = 91.2 GeV
unknowns	j_3	0	-3000 to +3000	60
n	83	0	-500 to +500	[
är	$\epsilon_{2,\mathrm{low}}$	0	-1, 0, 1	$\mu_{\rm J} = 0$
gul	$\epsilon_{2,\mathrm{high}}$	0	-1, 0, 1	$20 \qquad \mu_{S} = Q$
non-singular	$\epsilon_{3,\mathrm{low}}$	0	-1, 0, 1	
Ļ.	$\epsilon_{3, \mathrm{high}}$	0	-1, 0, 1	0.0 0.2 0.4 0.6 0.8
2				0.0 0.2 0.1 0.0 0.0

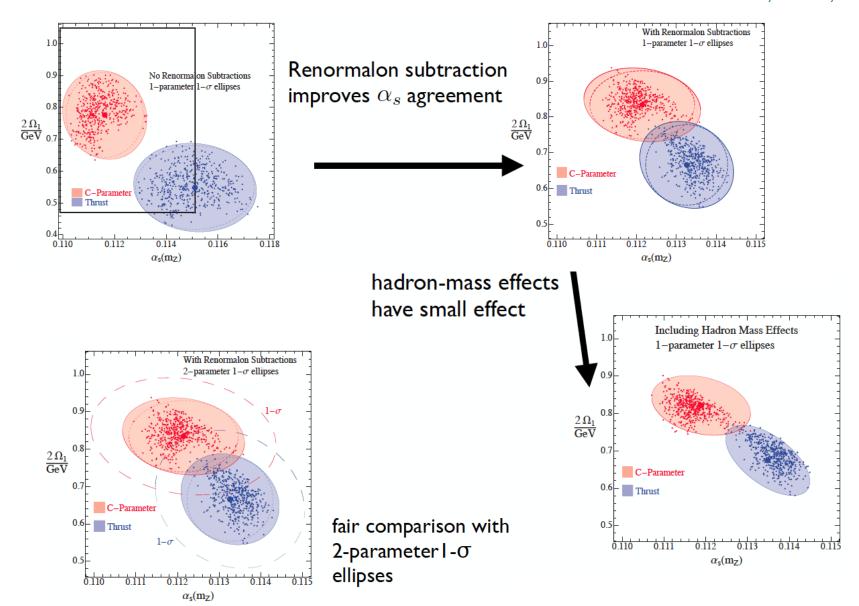


We perform global fits for energies between 35 and 206 GeV. We restrict ourselves to the tail of the distribution





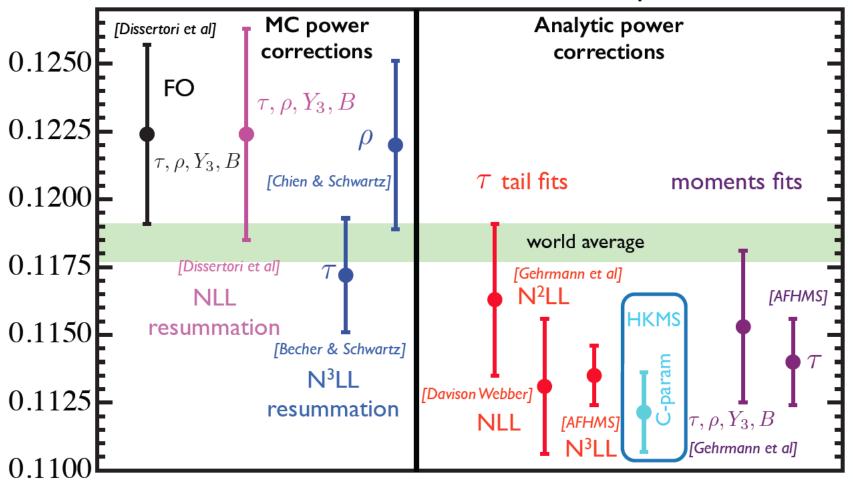
Thrust fts see Abbate, Fickinger, AH, Mateu, Stewart



Result

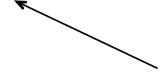
$$\alpha_s(m_Z) = 0.1121 \pm 0.0013_{\rm th} \pm 0.0006_{\rm exp} \pm 0.0002_{\rm had}$$

$\alpha_s(m_Z)$ determination from event shape fits



Conclusions: Strong Coupling from C-Parameter

- Strong coupling again low compared to world average (-5%)
- C-parameter slightly less precise
- Consistency to the results from thrust (predicted universality confirmed from data)
- State of the art: NNNLL(') order (missing: 4-loop cusp an.dim., 3-loop jet+soft fct)
- Upcoming: bottom mass effects (see also my talk on Thursday)
- Future update: QED effects
- Upcoming: heavy jet mass



None of these effects can possibly eliminate the discrepancy to the world average.

