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Outline 

•  Motivation 
•  Monte-Carlo top quark mass 
•  Variable flavor number scheme (VFNS) for final state jets 

with massive quarks 
•  Secondary massive quarks 
•  Primary massive quarks 
•  Preliminary results  
•  Conclusions 
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Motivation 

Top quark mass measurements at the ILC: 

ü  Total cross section @ threshold: NNLLNRQCD+resum, NNNLONRQCD  
ü  Total cross section @ 500-1000 GeV: NNNLOpQCD 

ü  Top reconstruction methods á la LHC: mt(MC)  

Rather well known/studied:  

ü  Boosted top: top jet invariant mass 
ü  Differential distributions @ threshold 

Not so well known/studied:  

Off-shell @ electroweak effects: 
e.g. width, couplings, alpha_s 
vs. mass 
(more discriminating power) 
More work needed here. 
 

This talk 
 Might be very 

useful also in the 
context of LHC ! 
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Heavy Quark Mass 

+ 
 
   

= p � m0 � ⌃(p, m0, µ)

MS scheme: m0 = m(µ)


1 � ↵s

⇡✏
+ . . .

�

→               is pure UV-object without IR-sensitivity 
 
 
→   Useful scheme for  
→   Used a lot in beyond TeV physics 

m(µ)
µ > m

•  Very energetic processes (E>>m) 
•  Total cross sections 
•  Off-shell massive quarks 
•  Away from thresholds/endpoints 

⌃(m0, m0, µ) = m0
h ↵s

⇡✏
+ . . .

i
+ ⌃fin(m0, m0, µ)

Pole scheme: m0 = mpole


1 � ↵s

⇡✏
+ . . .

�
� ⌃fin(mpole, mpole, µ)

→                 = perturbative single particle pole of perturbative S-matrix 
 
 

mpole

→   Separation: self energy corrections  ⟷  inter quark/gluon interactions 
                                                                      for all momenta  

→   Absorbes all self energy corrections into the mass parameter 

→   Has perturbative instabilities due to sensitivity to momenta < 1 GeV  (ΛQCD)  

Should not be used if 
uncertainties are 
below 1 GeV ! 
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Heavy Quark Mass 
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Pole scheme: m0 = mpole
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� ⌃fin(mpole, mpole, µ)

→   Interpolates between MS and pole mass scheme  
 

→   Separation: self energy corrections  ⟷  inter quark/gluon interactions 
                                                                      only for scales above R  

→   Improved stability in perturbation theory for all classes of observables.  

MSR scheme: 
mMSR(R) = mpole � ⌃fin(R,R, µ) Jain, AH, Scimemi, Stewart  (2008)  

mMSR

t (R = 0) = mpole

mMSR
t (R = m(m)) = m(m)

→   Absorbes self energy corrections into the mass parameter ONLY above scale R 
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Heavy Quark Mass in the MC 
Monte-Carlo QCD Calculator: 

•  Computes all inter-quark/gluon 
and radiation processes  

•  Computes hadronization of 
partons 

•  Electroweak radiation effects 

•  Does NOT calculate self-energy 
processes 

Inter-quark/gluon radiation/ 
Parton shower 
   cut-off at 
                        
Hadronization model below. 

Shower, shower cut, model 
details affect the value of top 
mass. 

⇤s = 1 GeV
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Heavy Quark Mass in the MC 
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Heavy Quark Mass in the MC 

•  What is the MC top quark is not 
controlled by perturbation theory at 
momentum scales below Λs= 1 GeV 

•  For scales below Λs the hadronization 
model affects the interpretation of the 
MC top mass. 

MC mass has features similar to 
the mass of a Top-meson. 

mMC
t = mquark

t + �

Scheme-dependent 

nonperturbative 
~ O(1 GeV) 

= mMSR
t (R) + �MSR(R)

We use knowledge from B-meson 
physics. 

Suitable scales: R = 1� 3 GeV ⇠ ⇤s

AH, Stewart: arXive:0808.0222    
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Theory Tool to Measure the MC mass 

•  Accurate analytic QCD predictions beyond LL/LO with full control 
over the quark mass dependence  

•  Theoretical description at the hadron level for comparison with MC 
at the hadron level 

→ Inclusive jet invariant mass distribution:  

•  Implementation of massive quarks into a general unified 
framework: valid for all quark masses and energies 

•  VFNS for final state jets (with massive quarks)* 
* In collaboration with: P. Pietrulewicz, V. Mateu, I. Jemos, S. Gritschacher 

arXiv:1302.4743  (PRD 88, 034021 (2013)) 
arXiv:1309.6251  (PRD 89, 014035 (2013)) 
arXiv:1405.4860  (PRD ..) 
More to come … 

The relation between MC mass and field theoretical mass can be 
made more precise by “measuring” the MC mass using a hadron 
level QCD prediction of a mass-dependent observable. 

* Also incorporates work on boosted tops:   Fleming, AHH, Mantry, Stewart 2007   
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Theory Tools to Measure the MC mass 

Observable: Thust in e+e-  ⌧ = 1�max~n

P
i |~n · ~pi|

Q

⌧!0⇡ M2
1 + M2

2

Q2

Relation to peak region of invariant mass distribution ! 

Other (similar) observables possible: maybe better than thrust 

Theoretical methods are applicable for:  

•  Boosted tops: top decay products within a single jets     
→ inclusive treatment viable                                           
→ non-perturb. effects from massless quark production 

All methods can also be applied directly to experimental data:  Ecm ≥ 500 GeV. 
Comparison to the MC is a different method, since it does not depend on 
experimental uncertainties. 
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Overall structure of predictions 
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•  Most singular terms  
•  factorization formula  
•  log summations 
•  Mass-dependence 

•  Kinematically suppressed 
•  Taken from fixed-order 

pQCD calculations 
•  Mass-dependence 

•  Universal: independent on 
quark mass (taken from 
massless quark jets)  

Perturbative 

Nonperturbative 

�(⌧),
⇣ ln ⌧

⌧

⌘

+
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Factorization for Massless Quarks (singular)  

Schwartz 
 
 
Fleming, AH, Mantry, Stewart 
 
 
Bauer, Fleming, Lee, Sterman 
 
 

�d�

d⇥

⇥sing

part
⇥ �0 H(Q, µQ)UH(Q, µQ, µs)

⇤
d⇤d⇤� UJ(Q⇥ � ⇤� ⇤�, µQ, µs)JT (Q⇤�, µj) ST (⇤��, µs)

Korshemski, Sterman 
 
 

Abbate, AH, Fickinger, Mateu, 
Stewart 
 
 

Renormalization scales that 
depend on the kinematic region 
(need to be varied to estimate 

perturbative uncertainty)   
 
 
 
 
 

See my talk on 
Tuesday 
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Accounting for full mass dependence  
p p

p
′

p
′

m

m

p p

p
′

p
′

m

p p

p
′

p
′

m

m

m

m

p p

p
′

p
′

m

→ fully massless 

→ secondary massive 
 

→ primary massive 
 

→ primary massive 
 secondary massive 

 

•  Full N3LL’ (u.t. 4-loop cusp)+ 3-loop non-singular 
•  Gap scheme for soft function 

Becher, Schwartz,  
 
 

Fleming, AH, Mantry, Stewart 
 
 

Bauer, Fleming, Lee, Sterman 
 
 

        SCET authors:  
 
 

•  Full N2LL’/N3LL  
•  Four different physical situations 

Pietrulewicz, AH, Gritschacher, Jemos 2013+2014 
 
 

•  Full N2LL’/N3LL finished 
•  Three different physical situations 
•  Massive quark loops in log resummation   

 
 

Being written up 
 

 Fixed-order authors:  
 
 

Ge]hrmann etal, Weinzierl 
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VFN Scheme: Secondary Massive Quarks 

m

m

p p

p
′

p
′

scen. 2 
 

scen. 1 
 

scen. 3 
 

scen. 4 
 

•  Provided results for factors with complete mass 
dependence at O(as^2) [NNNLL/NNLL’] 

•  Flavor threshold correction factors at O(as^2) 
•  Reconcile problem of SCET2-type rapidity 

divergences 
•  Establish consistency conditions of flavor 

threshold matching factors (e.g. universality 
between thrust and DIS@ large x 

•  Simple implementation rules related to 
modified renormalization conditions 

•  Method treating massive quark loops within log 
resummation 

•  Removal of O(ΛQCD) renormalon effects 
concerning mass and soft effects 

•  All possible kinematic regions covered 
(decoupling limit↔ massless limit)   

New developments:  
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VFN Scheme: Secondary Massive Quarks 
Example: scenario 1 for   m> Q  > Mjet > Esoft    

•  Same form as for massless case 
•  Massive quark corrections in C(nl) in the 

nl-flavor scheme for  
•  Decoupling of massive quark for m≫Q 
•  U(nl) evolution factors as in the massless 

case for nl quark flavors. 

↵(nl)
s
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VFN Scheme: Secondary Massive Quarks 
Example: scenario 2 for   Q > m  > Mjet > Esoft    

•  Massive quark corrections in C(nl+1) in the 
(nl+1)-flavor scheme for  

•  No mass singularities for m≪Q in C(nl+1)   
•  U(nl+1) evolution factors as in the massless 

case for (nl+1) quark flavors. 
•  Massive quark threshold correction MC for 

hard coefficient evolution at µm~m 
•  Separation of massive quark loops 

corrections 

↵(nl+1)
s

Approach similar to massive quark threshold for PDF evolution 
using the SCET formalism 
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Rapidity Logarithms 

•  Secondary mass effects start at O(αs
2) 

•  Counting for rapidity logs: αs Log ~ 1 
•  At O(αs

2): 

•  Extract O(αs
3 Log) MH

(3) term from DIS    

•  Modified counting needed 
•  Need terms at O(αs

3 Log) and O(αs
4 Log2)  

M(3)
H +

3X

n=0

an Ln
m

�

O(αs) 

O(αs
2) 

LM = ln
⇣m2

µ2
m

⌘

Use results from Alblinger, Blümlein, etal. 2014
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VFN Scheme: Primary Massive Quarks 
→ bHQET-type theory when 
 the jet scale approaches the quark mass 

 

→ two SCET-type theories  
 

m

p p

p
′

p
′

m

m

m

m

p p

p
′

p
′

m

no cross 
section 

 
bHQET 

 

scen. 3 
 

scen. 4 
 

Fleming, AHH, Mantry, Stewart 2007   
 

Dehnadi, AHH, Mateu Stewart upcoming  
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VFN Scheme: Primary Massive Quarks 

Example: SCET scenario 3: Q >> J > m > S  

•  Massive jet function (differs from massless) 
•  Soft matching coefficient (differs from massless) 
•  Universal hard coefficient 
•  Universal soft function 
•  RG-evolution analogous to massless case MS(µm,m) 

nf = n` + 1

J
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VFN Scheme: Primary Massive Quarks 
•  Mass dependence in all FO components of all factorization theorems 
•  Most relevant quark mass dependence contains in the jet functions (SCET & bHQET) 
•  Mass definition to be used depends on scale of the respective functions (→profile functions) !! 

•  Jet mass: from bHQET jet function  
•  MSR mass: derived from MSbar mass coefficients 

m(R) = mpole � �m(R)

m(R1)�m(R0) =
� R1

R0

dR

R
R ⇥R[�s(R)]

µ ≥ m: MSbar mass (nl+1) 

µ < m: R-scale short-distance mass (nl) 

m̄(µ) = m
pole

� m̄(µ)
1X

n=1

nX

k=0

ank

⇣↵s(µ)
4⇡

⌘n
lnk µ

m̄
→ usual MSbar RG-evolution 

Jain, Scimemi, Stewart 08 
Jain, Scimemi, Stewart, AH 08 

µm~ m: matching: → pert. renormalons-free relation through pole mass 



LCWS 2014, Belgrade, Oct 6 - 10, 2014 

VFN Scheme: Primary Massive Quarks 

ü  2-loop pQCD corrections available (Oleari, Nason + Rodrigo): but not analyzed yet 
ü  2-loop BHQET jet function  
ü  All evolution equation known to the required level. 

Status: 
NNLL+NLO: 

All one-loop pQCD corrections known analytically. 
All evolution equations known to the required level. 

NNNLL+NNLO: 

o  2-loop SCET jet function  
o  2-loop threshold matching corrections 

Full NNNLL+NLO probably available next year. 

Application to data: 
Tagged bottom event shape distribution data are on tape (JADE, OPAL), but have not 
been analyzed yet !!!    This could be done now with modern methods ! 
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MC vs. QCD: Primary Bottom Production 

Compare MC with QCD (SCET, summation, hadronization effects) @ NNLL+NLO for Thrust  

Preliminary !! 

•  Take central values for αs and Ω1 from our earlier NNLL thrust analysis for data on 
all-flavor production (=massless quarks)  

•  Compare with Pythia (mb
Pythia=4.8 GeV) for consistency and mass sensitivity 

•  Which mass does mb
Pythia=4.8 GeV correspond to for a field theoretic bottom mass?  

↵s(MZ) = 0.1192± 0.006
⌦1 = 0.276± 0.155

Denahdi, AHH, Mateu    
 

Abbate,Fickinger, AHH, Mateu, Stewart 2010  
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MC vs. QCD: Primary Bottom Production 
Preliminary !!  (no fit yet)     all NNLL+NLO 

mb(mb) = 4.2 GeV ⌦1 = 0.276 GeV↵s(MZ) = 0.1192

Q=16 GeV 
 

Q=24 GeV 
 

Q=48 GeV 
 

Q=91.187 GeV 
 

QCD calc.: 
Pythia: mPythia

b = 4.8 GeV
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MC vs. QCD: Primary Bottom Production 

Q=16 GeV 
 

Q=24 GeV 
 

Q=48 GeV 
 

Q=91.187 GeV 
 

Preliminary !!  (no fit yet)     all NNLL+NLO 

QCD calc.: 
Pythia: mPythia

b = 4.8 GeV
Mass sensitivity for 0.1 < m/pT  < 0.3.   mb(mb) = 3.7, 4.2, 4.7 GeV
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→ The MC top mass parameter has the status of a hadronic parameter and is 
therefore not a field theoretic mass definition 

→ As long as we don’t know more there is an uncertainty of about 1 GeV one needs 
to add when relating the MC mass to a low-scale field theory mass.  

→ Suitable field theory mass definition in this context: e.g. MSR mass (R=1-3 GeV) 

→ Using the pole mass in this context might be still ok for some applications (e.g. 
total cross section @ LHC), but will inevitably cause problems for other cases. 

→  It is possible to relate the MC top mass to a field theoretic mass by fits of QCD 
calculations at the hadron level to MC output for very mass sensitive quantities. 

→ QCD calculations for boosted top jet invariant masses allows to quantify this 
relation in a reliable manner (further work necessary for final answer). 

→  Fully massive thrust using a VFNS for final state inclusive jets. 

→  Upcoming:  

Conclusions 

•  Analysis for top quarks 
•  C parameter, heavy jet mass, inv. mass distr. @   NNLL   
•  DIS for massive quarks @ large x  
•  pp → tt+X (2-jettiness) @ NLL →  NNLL possible,  NNNLL need NNLO full. Diff.  



LCWS 2014, Belgrade, Oct 6 - 10, 2014 

Counting Rules 

  

standard 
counting 

primed 
counting 
emphasizes 
fixed order 

LL             NLL                   NNLL            NNNLL 

LLA 
NLLA 
NNLLA + LLO 
NNNLLA + NLO 
LLA 
NLLA + LLO 
NNLLA + NLO 
NNNLLA + NNLO 

Classic Counting 

Theory error from Padé estimate of �cusp
3


