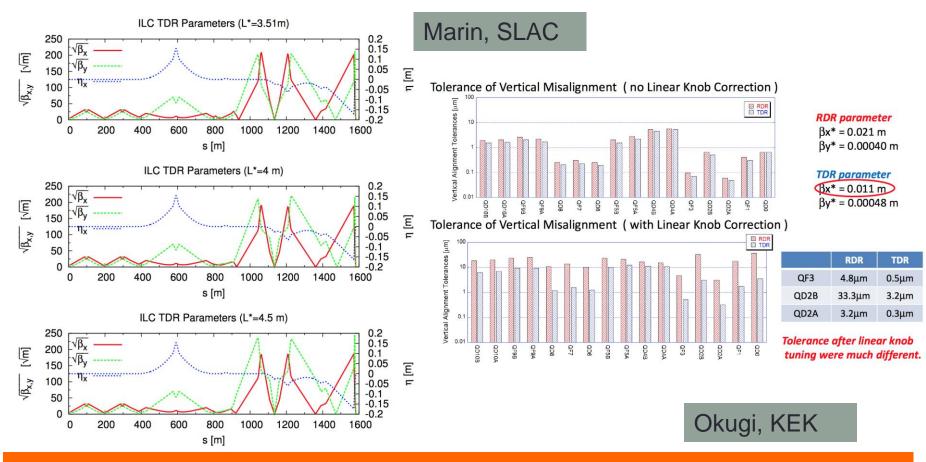
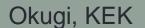
BDS WG / ATF2 SUMMARY

Glen White, SLAC Oct 10, 2014 LCWS2014, Belgrade, Serbia


Overview of Sessions

- 8 Sessions, 28 presentations
 - 4 joint with Beam Dynamics
 - 1 joint with MDI (content covered in MDI summary)
- Tueday
 - ILC & CLIC
- Wednesday & Thursday
 - ATF2
 - Small spot size tuning & stabilization program
 - ILC/CLIC Instrumentation & diagnostics R&D programs
 - Biannual Technical Board review of ATF2 program

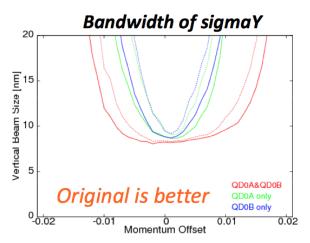
ILC BDS Progress

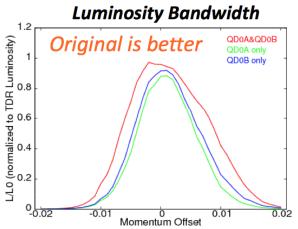

- Preparation of baseline FFS optics
 - 3.5, 4.0, 4.5m L* matched optics now exist that deliver deign IP parameters
 - 4.0m will form baseline for future studies (CR-002)
 - Misalignment, field error sensitivity studies
 - Up to order of magnitude tighter tolerances in some cases w.r.t. RDR
 - With current QF1 location, 4.0-4.5m L* preferred
 - Collimation
 - Required betatron spoiler apertures for SR hit suppression in IR studied -> OK for L*=4m
 - 250 GeV too tight in x
 - EXT design
 - Disrupted beam losses for 500 & 1,000 GeV E_{CM} (with & without beam offset)
 - · High-lumi 1 TeV case losses look too large, design optimisation required
 - Optics decks for whole machine DR-Dump under preparation for release in coming months
- Beam dynamics simulations
 - Early tuning simulation results indicate poorer expected lumi performance w.r.t. RDR parameters as expected
- Parameter optimisation studies
 - QF1 & QD0 location preferences
 - IP β_x/β_v
 - Bunch length

FFS Optics, Tolerances

Optics now exists for all L* options to deliver TDR IP parameters @ $E_{CM} = 500$ GeV. Tolerances significantly worse than RDR.

$E_{CM} = 250 \text{ GeV}$

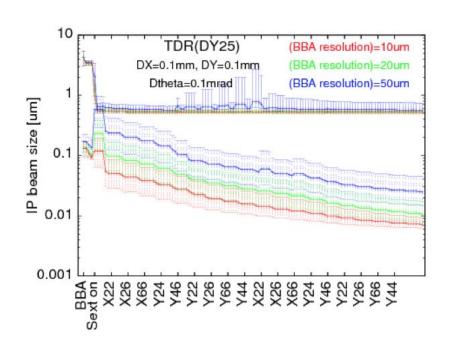


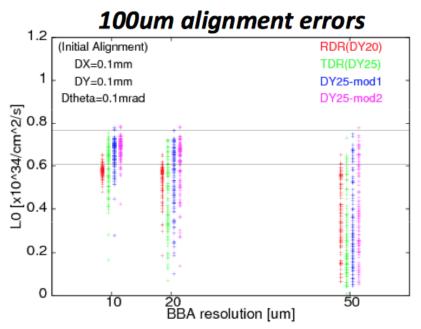

Simulation of the collimation depth for various QD0 arrangement

(QD0 L*) = 4.0m(Half aperture of SPEX) = 1.60 mm ($\Delta p/p = 1\%$)

	QD0	QD0	QD0	BetaX	BetaY	Collimator Half Aperture (SP2/SP4)		
	Length	L*	Center	at QF1	at QD0	X collimator	Y collimator	
QD0A	1.1m	4.0m	4.55m	29,660m	39,387m	0.65mm (3.2 σ)	0.67mm (58 σ)	
QD0A & B	2.2m	4.0m	5.10m	30,630m	46,376m	0.66mm (3.3 σ)	0.57mm (48 σ)	
QD0B	1.1m	5.1m	5.65m	26,713m	59,536m	0.68mm (3.4 σ)[*]	0.48 mm (40 σ)	

Too tight!





No solution currently for 250 GeV: Hard to optimise optics with shorter QD0, collimation requirement far too tight.

Tuning Simulations

Okugi, KEK

Poor tuning performance w.r.t. RDR. Slow & sensitive to errors. Performance can be improved by increasing β_x^* (reducing β_y^* some to compensate for lumi loss). Will continue to work to optimize and fully characterise performance.

Parameter Optimisations

List of

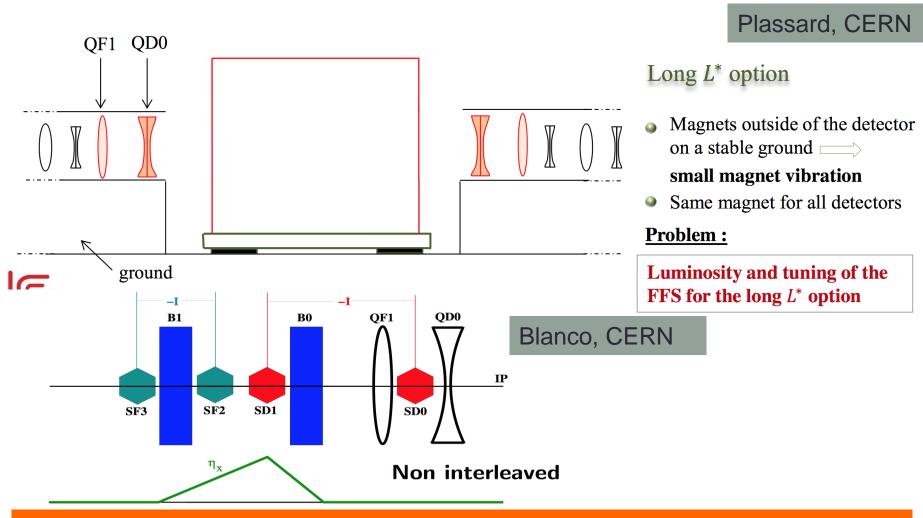
RDR, TDR and 2 more new IF

	R
Beam Energy	
Nb	1
frep	5
betaX*	21
betaY*	0.40
sigmaZ	0.30
emitx (normalized)	10
emity (normalized)	
sigmaX*	
sigmaY*	
Geometric Luminosity L0 [1/cm^2/s]	
Dy	
Ay = sigmaZ/betaY*	

Idea

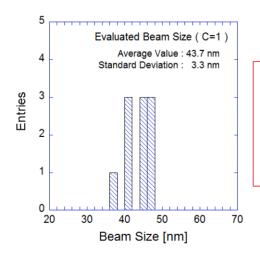
Wang, Gao, IHEP

- —Reduced bunch length enables:
 - 1) less beamstrahlung with the same luminosity,
 - 2) or higher luminosity with equal amount beamstrahlung.
- The approach is to use flatter beams
- using exactly the same magnets as ILC nominal design, only refitting them, but requiring a short bunch length (150 or 200 microns), which is the price to pay...


			,	
Ay = sigmaZ/betaY*	0.750	0.625	U./8/	0.938
Luminosity (no waist) [1/cm^2/s] [*]	1.05e34	1.55e34	1.36e34	1.23e34
Luminosity (waist) [1/cm^2/s] [*]	1.17e34	1.71e34	1.54e34	1.39e34
L / LTDR	0.68	1	0.90	0.81

Okugi, KEK

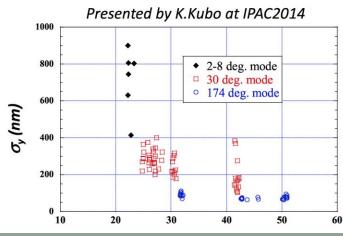
[*] calculated by K.Yokoya with CAIN

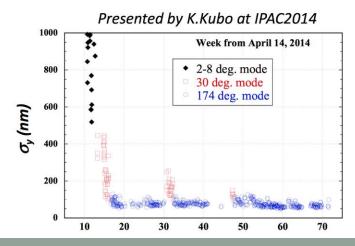

Look for ways to improve tolerances and get better tuning performance. Obviously parameter changes have to be carefully considered together with other systems.

Alternative FFS Design Options

Innovative FFS R&D continuing for CLIC, keep a keen eye on progress for possible future implementation if design improvements relevant to ILC shown.

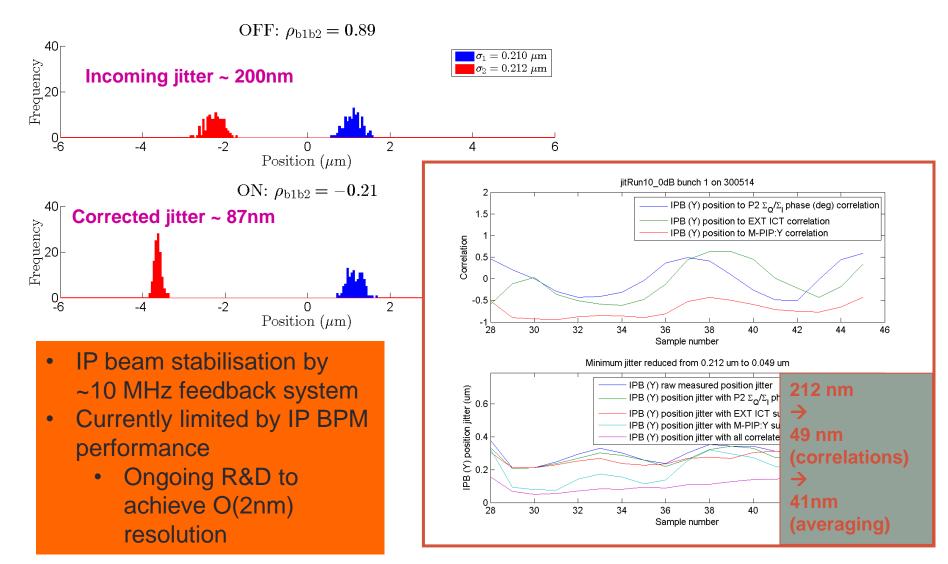
ATF2 Status – Goal 1 Achieve 37nm vertical beam waist




Minimum beam size at ATF2 is 44nm or less.

The minimum beam size was measured at 6/12/2014.

Remaining Issues to reach design 37nm:


- Identify and fix wakefield sources
- IP beam-fringe jitter
 - Orbit jitter
 - IPBSM laser jitter
 - Magnet jitter

~32 hrs recovery from 3 wk shutdown. ~16 hrs revovery from weekend beam-off.

ATF2 Status – Goal 2 IP vertical nm-level beam stabilisation

ATF2 R&D

ATF2 IP Beam Size measurements systematics	Ms. Jacqueline YAN
Kopaonik (30), Hyatt Regency	09:00 - 09:20
ATF2 IP BPM System	Mr. Siwon JANG
Kopaonik (30), Hyatt Regency	09:20 - 09:40
Development of a High Resolution Cavity BPM for the CLIC Main Beam	Jack Raymond TOWLER
Kopaonik (30), Hyatt Regency	09:40 - 10:00
Mitigation of ground motion in ATF2	Marcin PATECKI
Beograd (Joint with Beam Dynamics), Hyatt Regency	11:20 - 11:40
Halo Collimation	Mrs. Nuria FUSTER 📄
Beograd (Joint with Beam Dynamics), Hyatt Regency	11:40 - 12:00
Updates on mechanically adjustable PM Final Doublet	Dr. yoshihisa IWASHITA
Beograd (Joint with Beam Dynamics), Hyatt Regency	12:00 - 12:20
Octupoles / magnet design	Michele MODENA
Kopaonik (30), Hyatt Regency	15:00 - 15:20
Diamond sensor installation plans	Ms. Shan LIU
Danube (40), Crowne Plaza	14:00 - 14:20
Plans for wakefield-free steering in ATF2	Dr. Andrea LATINA
Danube (40), Crowne Plaza	14:20 - 14:40
OTR/ODR	Stefano MAZZONI 🗎
Danube (40), Crowne Plaza	14:40 - 15:00

A very rich ongoing research program into state-of-the-art diagnostics and beam dynamics control systems relevant to ILC & CLIC.

Thanks...

- To all speakers, co-conveners T. Okugu, R. Tomas, N. Terunuma
- Workshop organisers for fantastic venue and support.