Physics and ILD detector optimisation

Mikael Berggren¹

¹DESY, Hamburg

LCWS, Belgrade, Serbia, Oct. 2014

Outline

Introduction

Basic optimisations

Optimisation and physics

- Optimisation and physics: Tracking
- Optimisation and physics: Calorimeters
- Optimisation and physics: Other issues

4 Conclusions and recommendations

A D N A B N A B N

- Strategy for Detector & Physics Benchmarking:
- 1-to-1 relation between physics measurement and one specific detector performance aspect is rare ⇒
- can we factorise the two?
- Physics studies:
 - formulate requirements on various detector performance aspects, ideally "partial derivative"
 - this includes requirements on controlling systematics.
- Detector benchmarking:
 - Test a comprehensive list of performance aspects for various detector configurations.

(From J. List in the ILD concept meeting yesterday)

In This talk

- I will try to show how different detector issues that becomes important for different physics,
- It will not say (much) about detailed optimisation-work donre for individual detector elements.
- It will try to point out the way forward, rather than to give answers
- It has the ILD angle.

In This talk

- I will try to show how different detector issues that becomes important for different physics,
- It will not say (much) about detailed optimisation-work donre for individual detector elements.
- It will try to point out the way forward, rather than to give answers
- It has the ILD angle.

In This talk

- I will try to show how different detector issues that becomes important for different physics,
- It will not say (much) about detailed optimisation-work donre for individual detector elements.
- It will try to point out the way forward, rather than to give answers

It has the ILD angle.

In This talk

- I will try to show how different detector issues that becomes important for different physics,
- It will not say (much) about detailed optimisation-work donre for individual detector elements.
- It will try to point out the way forward, rather than to give answers
- It has the ILD angle.

Basic optimisations

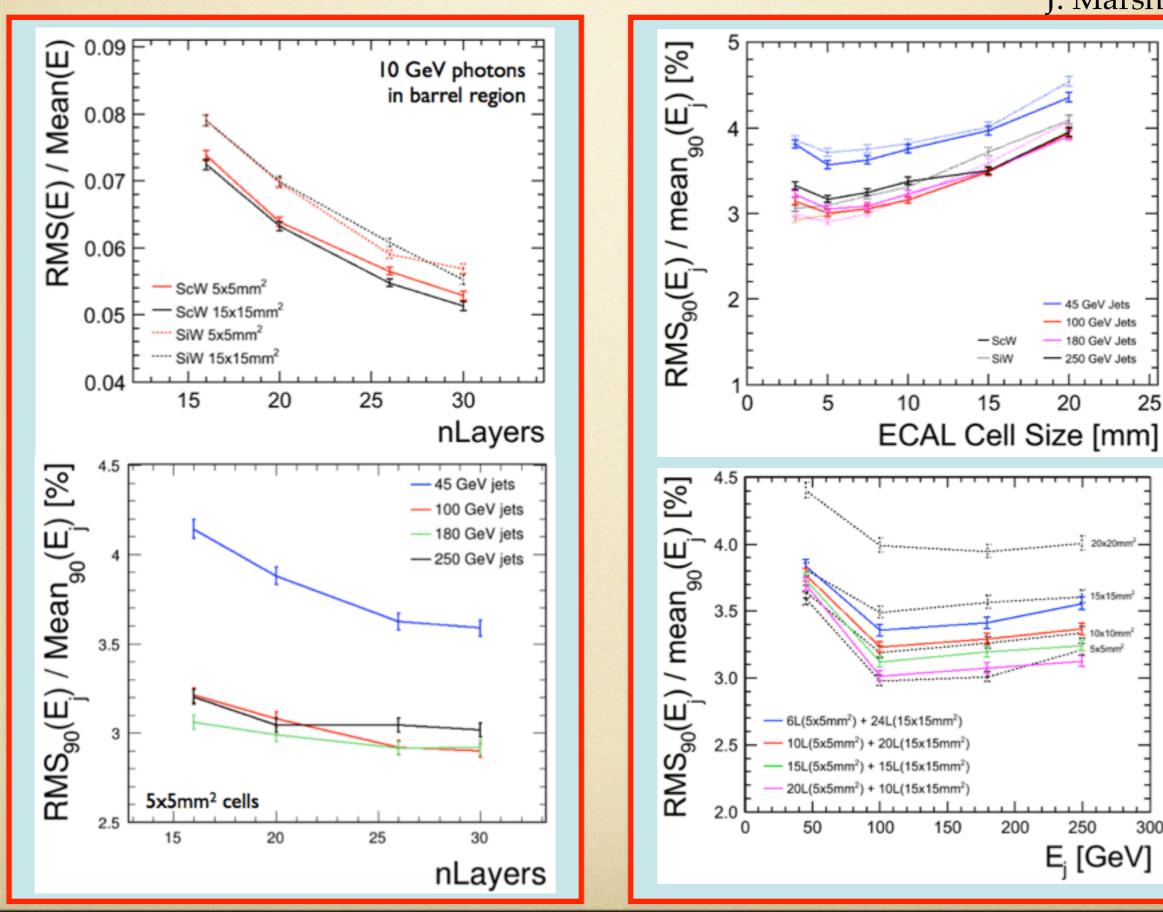
A few observations on detector-component optimisation in ILD (post DBD):

- Presently
 - Mainly has been about ECal
 - Radius
 - Sensitive detector technology
 - Number of layers
- Aimed at cost-reduction.
- Only considers JER as metric mainly for highest energy jets.

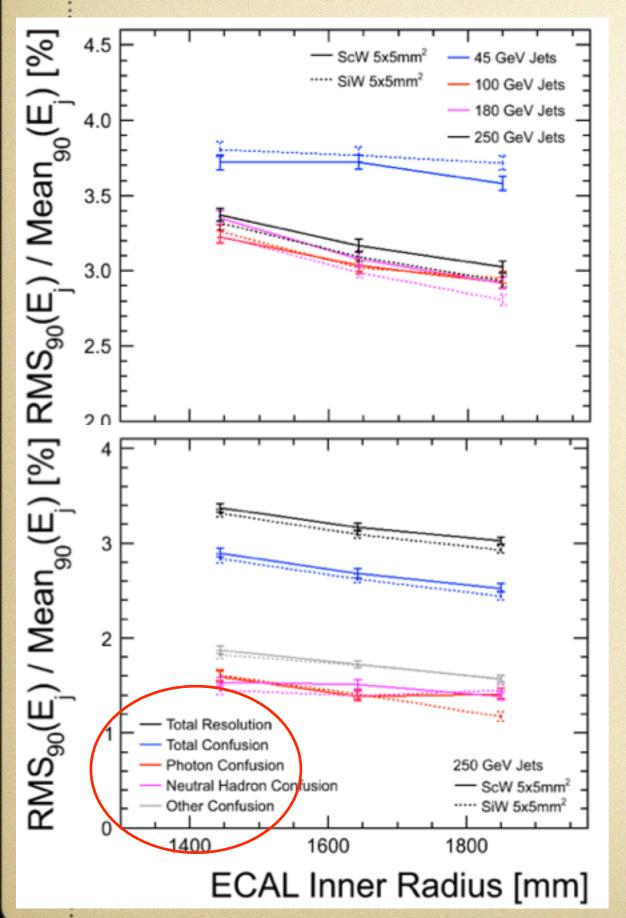
See slides of J. Tian's talk on Monday....

jet energy resolution: ECAL layers & granularity

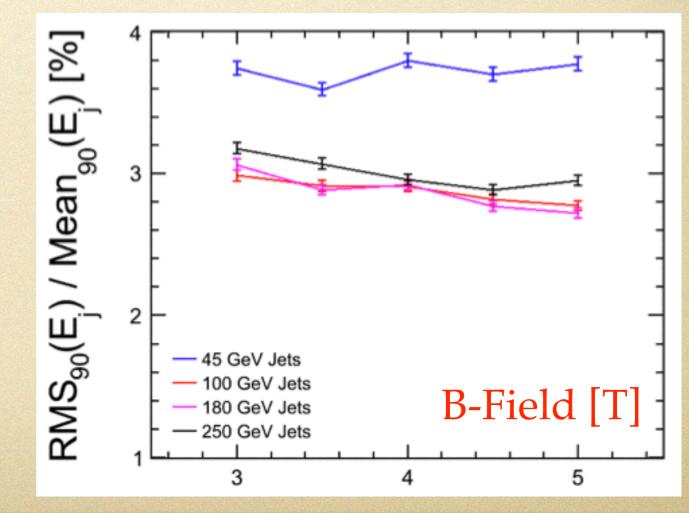
J. Marshall


45 GeV Jets

100 GeV Jets


180 GeV Jets

250


300

jet energy resolution: ECAL inner radius & B-Field J. Marshall

- single photon .vs. jet
- multi granularity ECAL
- smaller cell size, larger radius, high
 B-Field can help separate particles
- to understand PFA performance is most crucial here

- Higgs, higgs, higgs
 - What does that require ?
 - Has anything changed ?
- But also: we have been asked to strenthen the BSM case.
 What does that require ?
- ILC does precision physics \Rightarrow sytematics control
 - What does that require ?
- I will try to touch on aspects of these issues, looking at tracker and calorimetry separately.
- In no way a complete survey, Eg. nothing specific about impact-parameters.

- Higgs, higgs, higgs
 - What does that require ?
 - Has anything changed ?
- But also: we have been asked to strenthen the BSM case.
 - What does that require ?
- ILC does precision physics ⇒ sytematics control
 - What does that require ?
- I will try to touch on aspects of these issues, looking at tracker and calorimetry separately.
- In no way a complete survey, Eg. nothing specific about impact-parameters.

- Higgs, higgs, higgs
 - What does that require ?
 - Has anything changed ?
- But also: we have been asked to strenthen the BSM case.
 - What does that require ?
- ILC does precision physics ⇒ sytematics control
 - What does that require ?
- I will try to touch on aspects of these issues, looking at tracker and calorimetry separately.
- In no way a complete survey, Eg. nothing specific about impact-parameters.

- Higgs, higgs, higgs
 - What does that require ?
 - Has anything changed ?
- But also: we have been asked to strenthen the BSM case.
 - What does that require ?
- ILC does precision physics ⇒ sytematics control
 - What does that require ?
- I will try to touch on aspects of these issues, looking at tracker and calorimetry separately.
- In no way a complete survey, Eg. nothing specific about impact-parameters.

- Higgs, higgs, higgs
 - What does that require ?
 - Has anything changed ?
- But also: we have been asked to strenthen the BSM case.
 - What does that require ?
- ILC does precision physics ⇒ sytematics control
 - What does that require ?
- I will try to touch on aspects of these issues, looking at tracker and calorimetry separately.
- In no way a complete survey, Eg. nothing specific about impact-parameters.

Reminder:

- Δ(1/p_T) ∝ L^{-2.5} (2 purely geometric + (≥) 0.5 because of less points in TPC).
- But only linear in σ_{point} and B-field \Rightarrow
- Technologically challenging to compensate lower radius by higher B-field and/or σ_{point} .

Recent developments in Higgs analysis: |alertA game-changer?

- At 250 GeV, beam-spread dominating Higgs mass.
- Not so at 350: average p_µ approx 50% higher ⇒ Δ(p_t) is approx 2.5 times worse.
- Common wisdom up to now: No big deal, we'll get the mass at 250, then the rest at 350 and 500.
- True if only Z → leptons is used, which we want to do to remain model-independent, ie. with the Higgs decay making no difference.
- However, now methods and ideas are coming up to also use the hadronic decays ...
- See M. Thomson's talk in Oshu, T. Barklow in this conference.

Recent developments in Higgs analysis: |alertA game-changer?

- At 250 GeV, beam-spread dominating Higgs mass.
- Not so at 350: average p_µ approx 50% higher ⇒ Δ(p_t) is approx 2.5 times worse.
- Common wisdom up to now: No big deal, we'll get the mass at 250, then the rest at 350 and 500.
- True if only Z → leptons is used, which we want to do to remain model-independent, ie. with the Higgs decay making no difference.
- However, now methods and ideas are coming up to also use the hadronic decays ...
- See M. Thomson's talk in Oshu, T. Barklow in this conference.

Recent developments in Higgs analysis: |alertA game-changer?

- At 250 GeV, beam-spread dominating Higgs mass.
- Not so at 350: average p_µ approx 50% higher ⇒ Δ(p_t) is approx 2.5 times worse.
- Common wisdom up to now: No big deal, we'll get the mass at 250, then the rest at 350 and 500.
- True if only Z → leptons is used, which we want to do to remain model-independent, ie. with the Higgs decay making no difference.
- However, now methods and ideas are coming up to also use the hadronic decays ...
- See M. Thomson's talk in Oshu, T. Barklow in this conference.

Error-breakdown from T. Barklow, propagating uncertainties in BSM.

1st Five Years of ILC Running

Model	Independent	Higgs	Couplings $\Delta g_i /$	g_i
		00	1 0 0.7	· ·

	Scenario B	Scenario D-500	
\sqrt{s}	250 GeV	350 GeV	
Ĺ	360 fb^{-1}	470 fb^{-1}	
σ_{ZH} meas.	l^+l^- only	l^+l^- only	$l^+l^- + q\bar{q}$
γγ	14.9 %	11.0	11.0 %
<u>88</u>	5.2 %	3.3	3.1 %
WW	4.0 %	1.7	1.0 %
ZZ	1.1 %	1.5	0.72 %
$b\bar{b}$	4.4 %	2.4	2.0 %
$ au^+ au^-$	4.7 %	3.0	2.8 %
$c\bar{c}$	5.6 %	4.1	3.9 %
$\Gamma_T(h)$	9.6 %	7.1	4.9 %

- But, also in this case the Z → leptons gives a important contribution: they not so many, but they're much more precise.
- Higgs recoil @ 350 GeV ⇒ the return of the detector ...

< ロ > < 同 > < 回 > < 回 >

Mikael Berggren (DESY)

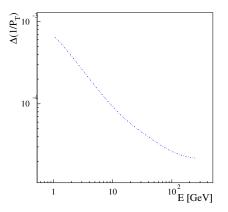
LCWS14 11/26

Error-breakdown from T. Barklow, propagating uncertainties in BSM.

1st Five Years of ILC Running

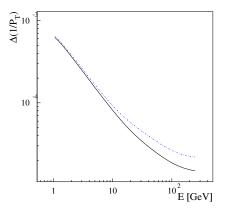
Model Independent Higgs	Couplings $\Delta g_i/g_i$
-------------------------	----------------------------

	Scenario B	Scenario D-500	
\sqrt{s}	250 GeV	350 GeV	
Ĺ	360 fb^{-1}	470 fb^{-1}	
σ_{ZH} meas.	l^+l^- only	l^+l^- only	$l^+l^- + q\bar{q}$
γγ	14.9 %	11.0	11.0 %
88	5.2 %	3.3	3.1 %
WW	4.0 %	1.7	1.0 %
ZZ	1.1 %	1.5	0.72 %
$b\bar{b}$	4.4 %	2.4	2.0 %
$ au^+ au^-$	4.7 %	3.0	2.8 %
$c\bar{c}$	5.6 %	4.1	3.9 %
$\Gamma_T(h)$	9.6 %	7.1	4.9 %

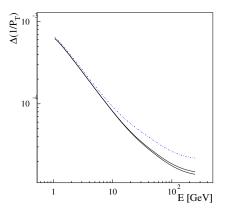

- But, also in this case the Z → leptons gives a important contribution: they not so many, but they're much more precise.
- Higgs recoil @ 350 $GeV \Rightarrow$ the return of the detector ...

< ロ > < 同 > < 回 > < 回 >

Mikael Berggren (DESY)


LCWS14 11/26

- How to get the best Δ(1/p_T) in ILD at high momentum ?
- Answer: The SET.
- Almost a factro 2.
- In fact, the current SET has saturated what can be achieved by a very precise external measurement, so only B remains !



- How to get the best Δ(1/p_T) in ILD at high momentum ?
- Answer: The SET.
- Almost a factro 2.
- In fact, the current SET has saturated what can be achieved by a very precise external measurement, so only B remains !

- How to get the best Δ(1/p_T) in ILD at high momentum ?
- Answer: The SET.
- Almost a factro 2.
- In fact, the current SET has saturated what can be achieved by a very precise external measurement, so only B remains !

- How to get the best Δ(1/p_T) in ILD at high momentum ?
- Answer: The SET.
- Almost a factro 2.
- In fact, the current SET has saturated what can be achieved by a very precise external measurement, so only B remains !

< (□) < 三 > (□)

BSM case-study

Natural SUSY: Light, degenerate higgsinos.

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

- \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}(\text{weak scale}).$
- If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.

•
$$M_{\tilde{\chi}_{12}^0}, M_{\tilde{\chi}_{11}^\pm} \approx \mu$$

- Degenerate (ΔM is 1 GeV or less)
- Few, quite soft tracks.
- $\Rightarrow \gamma \gamma$ background, effect of pairs background on pat. rec.

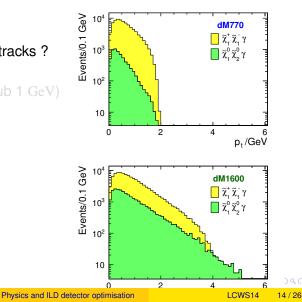
LCWS14 13/26

BSM case-study

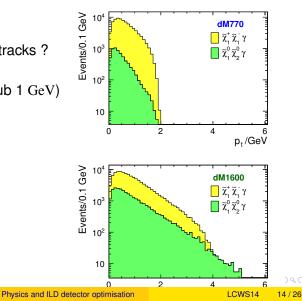
Natural SUSY: Light, degenerate higgsinos.

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$


- \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}(\text{weak scale}).$
- If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV.

•
$$M_{\tilde{\chi}_{12}^0}, M_{\tilde{\chi}_{11}^\pm} \approx \mu$$


- Degenerate (ΔM is 1 GeV or less)
- Few, quite soft tracks.
- $\Rightarrow \gamma \gamma$ background, effect of pairs background on pat. rec.

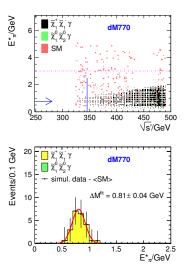
• How to find few, soft tracks ?

 The TPC has almost continuous ⇒ low (sub 1 GeV) track-finding.


- How to find few, soft tracks ?
- The TPC has almost continuous ⇒ low (sub 1 GeV) track-finding.

- Momentum resolution at low momentum: Higgsions
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_{1}^{0}}, M_{\tilde{\chi}_{1}^{\pm}})$ to \sim 100 MeV.

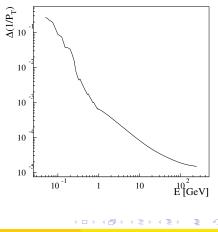
- Momentum resolution at low momentum: Higgsions
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_{1}^{0}}, M_{\tilde{\chi}_{1}^{\pm}})$ to \sim 100 MeV.


- Momentum resolution at low momentum: Higgsions
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_1^0}, M_{\tilde{\chi}_1^{\pm}})$ to ~ 100 MeV.

- E - N

Optimisation and physics: Tracking

- Momentum resolution at low momentum: Higgsions
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_{1}^{0}}, M_{\tilde{\chi}_{1}^{\pm}})$ to \sim 100 MeV.

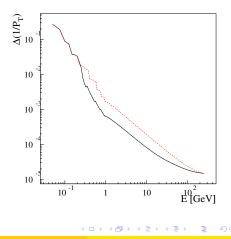


Gaseous detector ⇒ less M.S.
 ⇒ better σ at lower p:

• ILD,

 ... and an all Si tracker (with properties like SiD tracker)

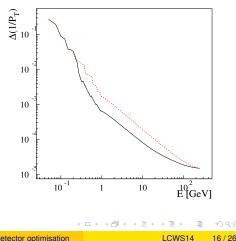
• Factor 2 better at 1 GeV.



Gaseous detector ⇒ less M.S.
 ⇒ better σ at lower p:

ILD,

 ... and an all Si tracker (with properties like SiD tracker)


• Factor 2 better at 1 GeV.

Gaseous detector ⇒ less M.S.
 ⇒ better σ at lower p:

ILD,

- ... and an all Si tracker (with properties like SiD tracker)
- Factor 2 better at 1 GeV.

Systematics case-study

Uncertainty on jet energy due to neutral-hadron fraction.

- With the Particle-flow paradigm, error on jet-energy is highly influenced by the worst measured particle-class: Neutral hadrons.
- → Number of neutral hadrons needs to be tuned.
- e^+e^- is not *pp*: Need to tune to data on the market now LEPII.
- Example numbers from current tune:

particle	Pythia	OPAL	LEP data
	tune	tune	
р	1.2190	0.9110	0.9750 ± 0.0870
n	1.1661	0.8664	
K ⁰ K ⁰	1.1168	1.0150	1.0040 ± 0.0150
KL	1.1057	1.0164	

Mikael Berggren (DESY)

LCWS14 17 / 26

Systematics case-study

Uncertainty on jet energy due to neutral-hadron fraction.

- With the Particle-flow paradigm, error on jet-energy is highly influenced by the worst measured particle-class: Neutral hadrons.
- \Rightarrow Number of neutral hadrons needs to be tuned.
- e^+e^- is not *pp*: Need to tune to data on the market now LEPII.
- Example numbers from current tune:

particle	Pythia	OPAL	LEP data
	tune	tune	
р	1.2190	0.9110	0.9750 ± 0.0870
n	1.1661	0.8664	
K^0_S	1.1168	1.0150	1.0040 ± 0.0150
KĽ	1.1057	1.0164	

Systematics case-study

Uncertainty on jet energy due to neutral-hadron fraction.

- With the Particle-flow paradigm, error on jet-energy is highly influenced by the worst measured particle-class: Neutral hadrons.
- \Rightarrow Number of neutral hadrons needs to be tuned.
- e^+e^- is not *pp*: Need to tune to data on the market now LEPII.
- Example numbers from current tune:

particle	Pythia	OPAL	LEP data
	tune	tune	
р	1.2190	0.9110	0.9750 ± 0.0870
n	1.1661	0.8664	
K^0_S	1.1168	1.0150	1.0040 ± 0.0150
Κ ^ŏ	1.1057	1.0164	

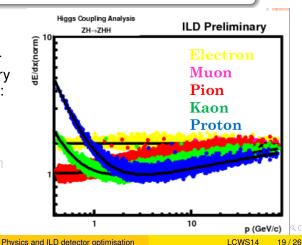
Mikael Berggren (DESY)

LCWS14 17/26

NB: Quite some dependence on tune ⇒

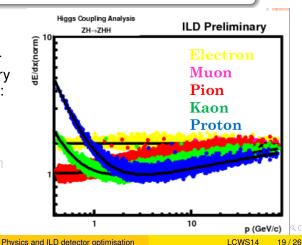
- We need to be able to do this with our data !
- Fraction of neutral hadrons: K_S^0 finding the key.
- c τ is 2,7 cm, meaning that the average flight of a \sim 5 GeV K_S^0 is \sim 30 : In TPC.

- NB: Quite some dependence on tune ⇒
- We need to be able to do this with our data !
- Fraction of neutral hadrons: K_S^0 finding the key.
- c τ is 2,7 cm, meaning that the average flight of a \sim 5 GeV K_S^0 is \sim 30 : In TPC.

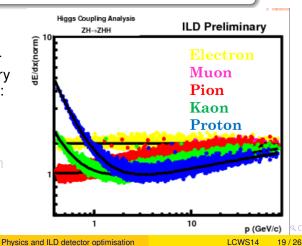

- NB: Quite some dependence on tune ⇒
- We need to be able to do this with our data !
- Fraction of neutral hadrons: K_S^0 finding the key.
- c τ is 2,7 cm, meaning that the average flight of a \sim 5 GeV K_S^0 is \sim 30 : In TPC.

< ロ > < 同 > < 回 > < 回 >

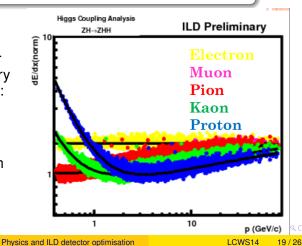
- NB: Quite some dependence on tune ⇒
- We need to be able to do this with our data !
- Fraction of neutral hadrons: K_S^0 finding the key.
- c τ is 2,7 cm, meaning that the average flight of a \sim 5 GeV K_S^0 is \sim 30 : In TPC.


Flavour-tag case strudy:

- Identify heavy flavour particles by secondary vertex reconstruction:
 - c ightarrow s \Rightarrow
 - Which one is K, which is π ?
- Particle id ⇒ dE/dx in TPC.


Flavour-tag case strudy:

- Identify heavy flavour particles by secondary vertex reconstruction:
 - c \rightarrow s \Rightarrow
 - Which one is K, which is π ?
- Particle id ⇒ dE/dx in TPC.


Flavour-tag case strudy:

- Identify heavy flavour particles by secondary vertex reconstruction:
 - c \rightarrow s \Rightarrow
 - Which one is K, which is π ?
- Particle id ⇒ dE/dx in TPC.

Flavour-tag case strudy:

- Identify heavy flavour particles by secondary vertex reconstruction:
 - c \rightarrow s \Rightarrow
 - Which one is K, which is π ?
- Particle id ⇒ dE/dx in TPC.

BSM case-study

Still Natural SUSY: Light, degenerate higgsinos.

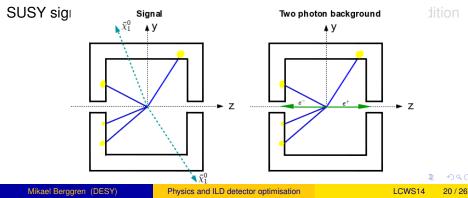
- How to detect ?
- Tag using ISR photon, then look at rest of event !

SUSY signal and $\gamma\gamma$ background ... and with an ISR photon in addition

< ロ > < 同 > < 回 > < 回 >

BSM case-study

Still Natural SUSY: Light, degenerate higgsinos.


- How to detect ?
- Tag using ISR photon, then look at rest of event !

SUSY signal and $\gamma\gamma$ background ... and with an ISR photon in addition

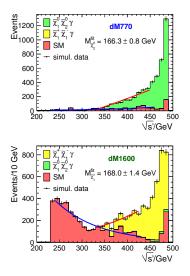
BSM case-study

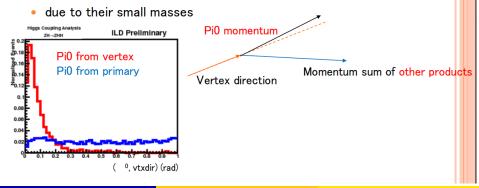
Still Natural SUSY: Light, degenerate higgsinos.

- How to detect ?
- Tag using ISR photon, then look at rest of event !

BSM case-study

Still Natural SUSY: Light, degenerate higgsinos.

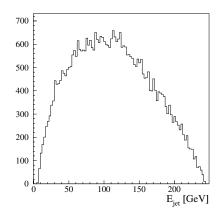

- How to detect ?
- Tag using ISR photon, then look at rest of event !


- Whenever s' matters, Ecal intrinsic matters. Example: Higgsinos again:
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.

< ロ > < 同 > < 回 > < 回 >

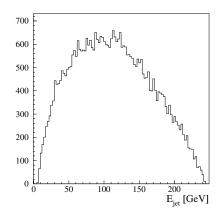
- Whenever s' matters, Ecal intrinsic matters. Example: Higgsinos again:
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.

- Find π⁰, attach to secondary vertex: Ecal intrinsic and direction matters (M. Kurata).
- Pi0s from (secondary, third) vertices are very collinear to vertex direction



Mikael Berggren (DESY)

Remark on PFA and jet-energy


- $WW \rightarrow$ hadrons at 500 Gev
- Average 112 GeV, 15 % below 50 GeV, 15 % above 175 GeV
 ⇒
- PFA performance well below 45 GeV matters !

- Remark on PFA and jet-energy
- $WW \rightarrow$ hadrons at 500 Gev
- Average 112 GeV, 15 % below 50 GeV, 15 % above 175 GeV ⇒
- PFA performance well below 45 GeV matters !

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Remark on PFA and jet-energy
- $WW \rightarrow$ hadrons at 500 Gev
- Average 112 GeV, 15 % below 50 GeV, 15 % above 175 GeV ⇒
- PFA performance well below 45 GeV matters !

Optimisation and physics: Other issues

- Trigger-less operation: DAC, data storage
- PID: muons, too.

Summary

- Different physics signatures emphasize different detector properties.
- A coherent optimisation must keep this in mind.
- All physics is important, either by it's own right, or to help control systematics.
- The new ideas of doing most Higgs physics at 350 GeV means that the tracking-performance at high momentum becomes important, again.
- For BSM, hermeticity and triggerless operation is essential.
- Low momentum track-finding and measurement might be essential
- Single photon energy resolution

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

- Different physics signatures emphasize different detector properties.
- A coherent optimisation must keep this in mind.
- All physics is important, either by it's own right, or to help control systematics.
- The new ideas of doing most Higgs physics at 350 GeV means that the tracking-performance at high momentum becomes important, again.
- For BSM, hermeticity and triggerless operation is essential.
- Low momentum track-finding and measurement might be essential
- Single photon energy resolution

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

- Different physics signatures emphasize different detector properties.
- A coherent optimisation must keep this in mind.
- All physics is important, either by it's own right, or to help control systematics.
- The new ideas of doing most Higgs physics at 350 GeV means that the tracking-performance at high momentum becomes important, again.
- For BSM, hermeticity and triggerless operation is essential.
- Low momentum track-finding and measurement might be essential
- Single photon energy resolution

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions and recommendations (J. List)

m_H from ee->vvH->vvbb

- JER
- π⁰ reconstruction
- b-tag, l in jet, excl. B decays
- JES, b-tag, had., frag, neutral hadrons fraction uncertainties

Similar, but for "light jets": mw from ee->evW->evqq

A_{FB} (top)

- JER, lepton ID, b-tag
- Jet charge, excl. B-decays,

Mono-photon WIMPs

Photon energy resolution & scale, hermeticity, suppression of Bhabhas, dL/dE_{CM}

Oct. 8, 2014 ILD Optimisation & Physics, J.List 6 Q.C. Mikael Berggreen (DESY) Physics and ILD detector optimisation LCWS14 26 / 26

Higgs CP properties Η->ττ

- τ reconstruction
- PID, Exclusive decay modes
- momentum & impact parameter

Near-degenerate Higgsinos

- Reco of low momentum particles
- Fake tracks
- PID, Exclusive decay modes
- Hermeticity
- Low and high-energy photon energy & angle resolution

Thank You !

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○