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The Higgs discovery is the triumph of XXth century physics
combination of Quantum Mechanism + Special Relativity

For the first time in the history of physics,
we have a *consistent* description of the fundamental constituents of matter and their 
interactions and this description can be extrapolated to very high energy (up MPlanck?)

My key message

• The days of “guaranteed” discoveries or of no-lose theorems in 
particle physics are over, at least for the time being ....

• .... but the big questions of our field remain wild open (hierarchy 
problem, flavour, neutrinos, DM, BAU, .... )

• This simply implies that, more than for the past 30 years, future 
HEP’s progress is to be driven by experimental exploration, 
possibly renouncing/reviewing deeply rooted theoretical bias

• This has become particularly apparent in the DM-related 
sessions:

• Direct detection experiments and astrophysics are challenging the 
theoretical DM folklore as much as the LHC is challenging the 
theoretical folklore about the hierarchy problem.

• But great opportunities lie ahead, and the current challenges are 
simply hardening theorists’ ingenuity, creativity and skills

3

MLM@Aspen’14

We all have a Post higgs Depression

https://indico.cern.ch/event/276476/session/13/contribution/38/material/slides/0.pdf
https://indico.cern.ch/event/276476/session/13/contribution/38/material/slides/0.pdf


Christophe Grojean BSM@BLHC LCWS14, Oct. 6, 2o142

The Higgs discovery is the triumph of XXth century physics
combination of Quantum Mechanism + Special Relativity

For the first time in the history of physics,
we have a *consistent* description of the fundamental constituents of matter and their 
interactions and this description can be extrapolated to very high energy (up MPlanck?)

My key message

• The days of “guaranteed” discoveries or of no-lose theorems in 
particle physics are over, at least for the time being ....

• .... but the big questions of our field remain wild open (hierarchy 
problem, flavour, neutrinos, DM, BAU, .... )

• This simply implies that, more than for the past 30 years, future 
HEP’s progress is to be driven by experimental exploration, 
possibly renouncing/reviewing deeply rooted theoretical bias

• This has become particularly apparent in the DM-related 
sessions:

• Direct detection experiments and astrophysics are challenging the 
theoretical DM folklore as much as the LHC is challenging the 
theoretical folklore about the hierarchy problem.

• But great opportunities lie ahead, and the current challenges are 
simply hardening theorists’ ingenuity, creativity and skills

3
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We all have a Post higgs Depression

Where and how does the SM break down?
Which machine(s) will reveal this breakdown?

https://indico.cern.ch/event/276476/session/13/contribution/38/material/slides/0.pdf
https://indico.cern.ch/event/276476/session/13/contribution/38/material/slides/0.pdf
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Which Machine(s)?

Hadrons Leptons

 large mass reach ➾ exploration
 S/B ~ 10-10 (w/o trigger)
 S/B ~ 0.1 (w/ trigger)
 requires multiple detectors 

          (w/ optimized design) 

 informs about couplings to quarks 
and gluons

 S/B ~ 1 
 polarized beams 

    (handle to chose the dominant process)
 limited (direct) mass reach
 identifiable final states 
 informs about EW couplings  

Without knowing the properties of New Physics BSM, 
opting for one option a delicate question
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Which Machine(s)?

Hadrons Leptons

 large mass reach ➾ exploration
 S/B ~ 10-10 (w/o trigger)
 S/B ~ 0.1 (w/ trigger)
 requires multiple detectors 

          (w/ optimized design) 

 informs about couplings to quarks 
and gluons

 S/B ~ 1 
 polarized beams 

    (handle to chose the dominant process)
 limited (direct) mass reach
 identifiable final states 
 informs about EW couplings  

Without knowing the properties of New Physics BSM, 
opting for one option a delicate question

Could have the Higgs boson been discovered 
w/o 30 years of theory efforts to characterize it?
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LHC14/LHC8: 
mass reach x O(2)

VHE-LHC100/LHC14: 
mass reach x O(5)

Direct exploration of an unexplored energy territory 
Salam & Weiler “cern.ch/collider-reach” ’14

http://collider-reach.web.cern.ch/collider-reach/
http://collider-reach.web.cern.ch/collider-reach/
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LHC14/LHC8: 
mass reach x O(2)

VHE-LHC100/LHC14: 
mass reach x O(5)

Direct exploration of an unexplored energy territory 
Salam & Weiler “cern.ch/collider-reach” ’14Future colliders comparison

2 New Particles Working Group Report

• The ILC new physics program has been studied in great detail, and has excellent capabilities to
discover and measure the properties of new physics, including dark matter, with almost no loopholes.
A necessary requirement is that the new physics must be accessible. Essentially this means particles at
su�ciently low mass missed by LHC due to blind spots, or heavy physics indirectly accessible through
precision measurement. Discovery of physics beyond the standard model at LHC that is accessible at
ILC would make the case even more compelling.

• A 100 TeV pp collider has unprecedented and robust reach for new physics that is evident even with
the preliminary level of studies performed so far. It can probe an additional two orders of magnitude
in fine-tuning in supersymmetry compared to LHC14, and can discover WIMP dark matter up to the
TeV mass scale. Any discovery at the LHC would be accessible at this machine and could be better
studied there, making the case for these options even more compelling.

• High energy e+e� colliders such as CLIC and muon colliders o↵er a long-term program that can extend
precision and reach of a wide range of physics.

A summary of the energy reach for a range of physics beyond the SM at various proposed facilities is shown
in Fig. 1-1. This is a highly simplified plot. In particular, although the mass reach of hadron colliders is
generally very impressive, hadron colliders searches often have blind spots, for example due to compressed
spectra or suppressed couplings. Searches at e+e� colliders are much more model independent, but generally
have more limited mass reach. Many examples of this complementarity are discussed in the body of this
report.
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Figure 1-1. 95% confidence level upper limits for masses of new particles beyond the standard model
expected from pp and e+e� colliders at di↵erent energies. Although upper mass reach is generally higher at
pp colliders, these searches often have low-mass loopholes, while e+e� collider searches are remarkably free
of such loopholes.

Community Planning Study: Snowmass 2013

Energy Frontier Snowmass study (1311.0299)Energy Frontier Snowmass Study ’13

http://collider-reach.web.cern.ch/collider-reach/
http://arxiv.org/pdf/1311.0299v1.pdf
http://arxiv.org/pdf/1311.0299v1.pdf
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HEP with a Higgs boson
“If you don’t have the ball, you cannot score”

See FR,Pomarol,Gupta’14

I think this is a....

Messi-Goal!!!
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Now with the Higgs boson in their hands, 
particle physicists can... play as well as Germans against Brazilians
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HEP with a Higgs boson
“If you don’t have the ball, you cannot score”

Now with the Higgs boson in their hands, 
particle physicists can... play as well as Germans against Brazilians

 Is it the SM Higgs?
 Is it an elementary/composite particle?
 Is it unique/solitary?
 Is it eternal/temporary?
 Is it natural?
 Is it the first supersymmetric particle ever observed?
 Is it really “responsible” for the masses of all the elementary particles?
 Is it mainly produced by top quarks or by new heavy vector-like quarks?
 Is it a portal to a hidden world?
 Is it at the origin of the matter-antimatter asymmetry?
 Is it responsible for the inflationary expansion of the Universe?
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Precision Higgs physics 
& New Physics

1
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What is the Higgs the name of?
The SM Higgs couplings are fixed to restore unitarity with mass

For b=a2: perturbative unitarity in inelastic channels WW → hh

‘a’, ‘b’ and ‘c’ are arbitrary free couplings

For a=1: perturbative unitarity in elastic channels WW → WW

LEWSB =
v2

4
Tr

�
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For ac=1: perturbative unitarity in inelastic WW → ψ ψ 

Contino, Grojean, Moretti, Piccinini, Rattazzi  ’10Cornwall, Levin, Tiktopoulos  ’73

Goldstone of SU(2)LxSU(2)R/SU(2)V� = ei⇥
a�a/v Dµ⌃ = gVµ

http://link.aps.org/abstract/PRL/V30/P1268
http://link.aps.org/abstract/PRL/V30/P1268
http://arXiv.org/abs/1002.1011
http://arXiv.org/abs/1002.1011
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Goldstone of SU(2)LxSU(2)R/SU(2)V� = ei⇥
a�a/v Dµ⌃ = gVµ

Higgs couplings 
are proportional 

to the masses of the particles
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“It has to do with the EWSB”

Already first data gave evidence of:

True in the SM:

Scaling                         follows naturally if 
the new boson is part of the sector that 
breaks the EW symmetry 

It does not necessarily imply that the new 
boson is part of an SU(2)L doublet

coupling ∝ mass

Ex: composite NG boson in TC

For a non-doublet 
one naively expects:
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http://cms-higgs-results.web.cern.ch/cms-higgs-results/Comb/HIG-14-009/sqr_m6summary_fit.png
http://cms-higgs-results.web.cern.ch/cms-higgs-results/Comb/HIG-14-009/sqr_m6summary_fit.png
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Figure 1: The Standard Model predicts that the Higgs couplings to fundamental fermions
are linearly proportional to the fermion masses, whereas the couplings to bosons are pro-
portional to the square of the boson masses. Left: the CMS fit to the current Higgs data,
showing good consistency with this prediction, from [8]. Right: the expected improvement
in the precision in the measurement of the Higgs couplings at the ILC, from [1].

that any new physics that screens the Higgs mass from large quantum corrections
generically leads to deviations in the Higgs couplings to photons and gluons at least
as large as 1%. Supersymmetric and composite Higgs models are prime examples of
this general pattern.

However, the size of deviations in the Higgs couplings is limited by LHC exclusions
of new particles and by precision weak interaction measurements. The deviations
predicted in all of the models above are small, at the level of about 5%, varying as
m2

h/M
2, where M is the mass of the new particles predicted in the model.

At the LHC, the uncertainties in the Standard Model predictions for the rates of
Higgs processes are of the order of 5%, and systematic errors on detection probabilities
are of the same order. In addition, only a subset of the Higgs decays can be observed
directly. Because not all Higgs decays are observed, there are further ambiguities,
discussed below. Thus, the goal for Higgs boson experiments, the measurement of
the individual Higgs couplings to accuracies of better than 1%, can be met only by
experiments at an electron-positron collider. The improvement expected from the
ILC over the current measurements is shown in Fig. 1(b) [1].

4

The LHC cannot fully confirm this picture
(no model-independent measurements of the couplings, no access to the couplings to light particles...)
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Higgs couplings measurement projections
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Table 1-20. Expected precisions on the Higgs couplings and total width from a constrained 7-parameter fit assuming no non-SM
production or decay modes. The fit assumes generation universality (u ⌘ t = c, d ⌘ b = s, and ` ⌘ ⌧ = µ). The ranges
shown for LHC and HL-LHC represent the conservative and optimistic scenarios for systematic and theory uncertainties. ILC numbers
assume (e�, e+) polarizations of (�0.8, 0.3) at 250 and 500 GeV and (�0.8, 0.2) at 1000 GeV, plus a 0.5% theory uncertainty. CLIC numbers
assume polarizations of (�0.8, 0) for energies above 1 TeV. TLEP numbers assume unpolarized beams.

Facility LHC HL-LHC ILC500 ILC500-up ILC1000 ILC1000-up CLIC TLEP (4 IPs)p
s (GeV) 14,000 14,000 250/500 250/500 250/500/1000 250/500/1000 350/1400/3000 240/350

R Ldt (fb�1) 300/expt 3000/expt 250+500 1150+1600 250+500+1000 1150+1600+2500 500+1500+2000 10,000+2600

� 5� 7% 2� 5% 8.3% 4.4% 3.8% 2.3% �/5.5/<5.5% 1.45%

g 6� 8% 3� 5% 2.0% 1.1% 1.1% 0.67% 3.6/0.79/0.56% 0.79%

W 4� 6% 2� 5% 0.39% 0.21% 0.21% 0.2% 1.5/0.15/0.11% 0.10%

Z 4� 6% 2� 4% 0.49% 0.24% 0.50% 0.3% 0.49/0.33/0.24% 0.05%

` 6� 8% 2� 5% 1.9% 0.98% 1.3% 0.72% 3.5/1.4/<1.3% 0.51%

d = b 10� 13% 4� 7% 0.93% 0.60% 0.51% 0.4% 1.7/0.32/0.19% 0.39%

u = t 14� 15% 7� 10% 2.5% 1.3% 1.3% 0.9% 3.1/1.0/0.7% 0.69%
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Why mH/MPl~10-16? Why mH so close to the critical boundary?

0 1-1

E/MPl

no EWSB
SM

V (H) = �µ2|H|2 + �|H|4
The last unknown parameter of the SM has been measured

µ ⇡ 88.8GeV � ⇡ 0.13

Higgs & Naturalness
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Higgs couplings = test of Naturalness?

SM + Higgs
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The more natural the theory the more the Higgs rates deviate from SM
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Higgs & New Physics 
Precision /indirect searches (high lumi.) vs. direct searches (high energy)

Christophe Grojean Effective Higgs Zurich, 7th.Jan. 2o1311

Effective Higgs

typical mass scale
M = g* f

NP
EW scale v=246GeV

g, g’, yt

SM

g2  /g*
SM

effective approach valid iff
mass gap: M >> gSM v

weakly coupled NP strongly coupled NP

MSSM in the decoupling limit composite Higgs models

in both cases, Higgs couples to NP with g*

g* ~ gSM g* >> gSM

 Precision Higgs study: 

 Direct searches for resonances:

Composite Higgs : Reach 
Complementary approaches to probe composite Higgs models 
•  Direct search for heavy resonances at the LHC 
•  Indirect search via Higgs couplings at the ILC 
Note: the two approaches cannot be directly compared since the spectra of 
the heavy resonances are heavily model-dependent.  Higgs couplings provide 
a model-independent probe of Higgs compositeness. 

Mass (TeV)
0 1 2 3 4

vector-like quark

 resonancett

WZ resonance

LHC Projection -1300 fb -13000 fb

LHC direct search 
�#�

ILC Higgs couplings 
Scale Reach (TeV)

0 1 2 3 4

MCHM14

MCHM5

MCHM4

via Yukawa 

model-independent ⇠ ⌘ �g

g
=

v2

f2

m⇢ ⇡ g⇤f

Which one is doing best?
it depends on value of g*
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Extrapolated Bounds

2013

2020

2030

2040

mV = gV f = gV v/
p

⇠

0 5 10 15 20 25 30 35

0.0001

0.001

0.01

0.1

1.

0.0002

0.002

0.02

0.2

0.00005

0.0005

0.005

0.05

0.5

mV in TeV

x

LH
C
, 8
Te
V
, 2
0
fb
-
1

gV=4p

gV=1

EWPT DT
`
=0

12

Higgs & New Physics 
Precision /indirect searches (high lumi.) vs. direct searches (high energy)

a deviation in Higgs couplings also teaches us on the maximum mass scale to search for!
e.g. 10% deviation ➾ mV < 10TeV i.e. resonance within the reach of FCC-hh

ILC/TELP

 large region of parameter 
space already disfavored by 
EW precision data

 complementarity between 
direct searches @ hadron 
machine and indirect higgs  
measurements @ lepton 
machine

Contino, Grojeam, Pappadopulo, Rattazzi, Thamm ’13
Torre, Thamm, Wulzer ’14

http://arxiv.org/abs/arXiv:1309.7038
http://arxiv.org/abs/arXiv:1309.7038
http://arxiv.org/abs/arXiv:1402.4431
http://arxiv.org/abs/arXiv:1402.4431
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Higgs and Flavor
In SM, the Yukawa interactions are the only source of the fermion masses

yij f̄LiHfRj =
yijvp

2
f̄LifRj +

yijp
2
hf̄LifRj

mass higgs-fermion interactions

both matrices are simultaneously diagonalizable 

no tree-level Flavor Changing Current induced by the Higgs
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In SM, the Yukawa interactions are the only source of the fermion masses

yij f̄LiHfRj =
yijvp

2
f̄LifRj +

yijp
2
hf̄LifRj

mass higgs-fermion interactions

both matrices are simultaneously diagonalizable 

no tree-level Flavor Changing Current induced by the Higgs

Not true anymore if the SM fermions mix with vector-like partners  or for non-SM Yukawa 

yij

✓
1 + cij

|H|2

f2

◆
f̄LiHfRj =

yijvp
2

✓
1 + cij

v2

2f2

◆
f̄LifRj +

✓
1 + 3cij

v2

2f2

◆
yijp
2
hf̄LifRj

(*) e.g. Buras, Grojean, Pokorski, Ziegler ’11 

(*) 

http://arXiv.org/abs/1105.3725
http://arXiv.org/abs/1105.3725
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Look for SM forbidden Flavor Violating decays h → μτ and t→hc

weak indirect constrained by flavor data (e.g. μ→ eγ): BR<10%
ATLAS and CMS have the sensitivity to set bounds O(1%)
ILC/CLIC/FCC-ee can certainly do much better 

 Blankenburg, Ellis, Isidori ’12

Harnik et al ’12
Davidson, Verdier ’12

CMS-PAS-HIG-2014-005

http://arXiv.org/abs/1105.3725
http://arXiv.org/abs/1105.3725
http://cds.cern.ch/record/1740976/files/HIG-14-005-pas.pdf
http://cds.cern.ch/record/1740976/files/HIG-14-005-pas.pdf
http://arXiv.org/abs/1211.1248
http://arXiv.org/abs/1211.1248
http://arXiv.org/abs/1209.1397
http://arXiv.org/abs/1209.1397
http://arXiv.org/abs/1202.5704
http://arXiv.org/abs/1202.5704
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Figure 6: Constraints on the flavor violating Yukawa couplings, |Yµt|, |Ytµ|. The expected (red
solid line) and observed (black solid line) limits are derived from the limit on B(H ! µt) from
the present analysis. The diagonal Yukawa couplings are approximated by their SM values.
The black dashed lines are contours of B(H ! µt) for reference. The shaded regions are
derived constraints from null searches for t ! 3µ (dark green) and t ! µg (lighter green).
The orange diagonal line is the theoretical naturalness limit YijYji  mimj/v2. The yellow line
is the limit from a reinterpretation, by a theoretical group [8], of an ATLAS H ! tt search.

Off-diagonal Higgs couplings can reveal the origin of flavor
We need to know the prospects to measure them at lepton colliders!

CMS-PAS-HIG-2014-005

by the way:
2.3σ excess!

http://cds.cern.ch/record/1740976/files/HIG-14-005-pas.pdf
http://cds.cern.ch/record/1740976/files/HIG-14-005-pas.pdf
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Potentially new BSM-effects in h physics 
could have been already tested in the vacuum

SM Scalar is the excitation around the EWSB vacuum: 

! = v+h

H†DµHf̄�µf

=
1

2v
⇥

Modifications in h→Zff  related to Z→ff      

vacuum

e.g.

(assuming that the Higgs boson
is part of a doublet)
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Higgs physics vs BSM 

https://indico.in2p3.fr/getFile.py/access?contribId=216&sessionId=8&resId=0&materialId=slides&confId=9116
https://indico.in2p3.fr/getFile.py/access?contribId=216&sessionId=8&resId=0&materialId=slides&confId=9116
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Higgs/BSM Primaries

e.g.

G G
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µ⌫ +
|H|2

⇤2
G2

µ⌫ !
✓

1

g2s
+

v2

⇤2

◆
G2

µ⌫

Effects that on the vacuum, H = v, give only !
a redefinition of the SM couplings:

⨂ ⨂

G G
Not physical!

But can affect h physics:

G G

⨂h
affects GG →h!

(c
ou

rt
es

y 
of

 A
. P

om
ar

ol
@

H
ig

gs
H

un
ti

ng
20

14
)

operator
is not visible in 

the vacuum

this BSM operator is visible only in Higgs physics!

http://indico.lal.in2p3.fr/event/2288/session/10/contribution/31/material/slides/0.pdf
http://indico.lal.in2p3.fr/event/2288/session/10/contribution/31/material/slides/0.pdf
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Higgs/BSM Primaries

(f=t,b,!)

htt, hbb, h!!

GGh coupling

hγγ coupling

hVV*

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB
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µTAuR) ,

Ou
RR = (ūR�

µuR)(ūR�
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at the LHC

the 6 others have been measured (~10%) up to a flat direction 
between between the top/gluon/photon couplings
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Figure 1: The blue ellipses represent the 68% (solid), 95% (dashed) and 99% (dotted) CL bounds

on Ŝ and T̂ as obtained in the fit of Ref. [30] with U = 0. The straight lines represent the RG-

induced contribution to the oblique parameters from the weakly constrained observable couplings

of Eq. (4.21), divided in Higgs couplings (a) and TGC couplings (b), using the first two lines of

Eq. (4.22). The length of the lines corresponds to their present 95% CL direct bounds, see Table 3;

the line is green (red) for positive (negative) values of the parameters.

or of the same order of, the direct tree-level constraint. We also obtain RG-induced bounds
from the direct constraint on ĉ�� using the fifth line in Eq. (4.22) and Eq. (4.10),

ĉ� 2 [�0.3, 0.2] ,

ĉ�� 2 [�0.10, 0.05] ,
(4.23)

but at present these bounds are weaker than those from the direct bounds on electroweak
parameters.

Let us briefly comment on alternate choices for our observable basis. A change of ob-
servable basis will in general modify the anomalous dimension matrix of Table 5, also for
the observables which were maintained in the basis. Thus, the RG-induced constraints we
have derived, are applicable only to our particular choice of observables, and for an alternate
choice the analysis must be repeated.10 For instance, the Higgs decay observables such as
h ! W+W�, ZZ could have been alternatively chosen as part of our observable basis instead
of two of the TGC observables (� and gZ) but we have kept the TGC in our basis as they

10Note that for our choice of observable basis, h ! �� does not receive a contribution from the Ŝ parameter

even though there is a dependance on cWB in the anomalous dimension since cWB is actually reconstructing

the �� parameter.

16

The blue ellipses represent the 68% (solid), 95% (dashed) and 99% (dotted) CL bounds on S and T. 
The straight lines represent the RG-induced contribution to the oblique parameters 

from the weakly constrained observable couplings, divided in Higgs couplings (a) and TGC couplings (b). 
The length of the lines corresponds to their present 95% CL direct bounds.
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Quantity Physics Present Measured Statistical Systematic Key Challenge

precision from uncertainty uncertainty

mZ (keV) Input 91187500± 2100 Z Line shape scan 5 (6) < 100 Ebeam calibration QED corrections

ΓZ (keV) ∆ρ (not ∆αhad) 2495200± 2300 Z Line shape scan 8 (10) < 100 Ebeam calibration QED corrections

R! αs, δb 20.767± 0.025 Z Peak 0.00010 (12) < 0.001 Statistics QED corrections

Nν PMNS Unitarity, . . . 2.984± 0.008 Z Peak 0.00008 (10) < 0.004 Bhabha scat.

Nν . . . and sterile ν’s 2.92± 0.05 Zγ, 161GeV 0.0010 (12) < 0.001 Statistics

Rb δb 0.21629± 0.00066 Z Peak 0.000003 (4) < 0.000060 Statistics, small IP Hemisphere correlations

ALR ∆ρ, ε3, ∆αhad 0.1514± 0.0022 Z peak, polarized 0.000015 (18) < 0.000015 4 bunch scheme, 2exp Design experiment

mW (MeV) ∆ρ , ε3, ε2, ∆αhad 80385± 15 WW threshold scan 0.3 (0.4) < 0.5 Ebeam, Statistics QED corrections

mtop (MeV) Input 173200± 900 tt̄ threshold scan 10 (12) < 10 Statistics Theory interpretation

Table 9. Selected set of precision measurements at TLEP. The statistical errors have been determined with (i) a one-year scan of the Z resonance
with 50% data at the peak, leading to 7× 1011 Z visible decays, with resonant depolarization of single bunches for energy calibration at O(20min)
intervals; (ii) one year at the Z peak with 40% longitudinally-polarized beams and a luminosity reduced to 20% of the nominal luminosity; (iii) a
one-year scan of the WW threshold (around 161GeV), with resonant depolarization of single bunches for energy calibration at O(20min) intervals;
and (iv) a five-years scan of the tt̄ threshold (around 346GeV). The statistical errors expected with two detectors instead of four are indicated
between brackets. The systematic uncertainties indicated below are only a “first look” estimate and will be revisited in the course of the design study.
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O(20-30) improvement in EW oblique parameters measurement
(ILC/now ≈ 2÷3 improvement only)
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Among the 59 irrelevant directions, 6 CP Higgs/BSM primaries6 BSM primary effects:
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⇠ hFF̃ �
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FIG. 1. Left: the diagram that gives rise to fermionic EDMs via the insertion of the operator hF F̃ from Eq. (2). Right: the
two-loop diagram that leads to fermion EDMs in the model involving a VL lepton,  , coupled to a singlet, S, that mixes with
the Higgs. The cross on the scalar line indicates that this contribution is proportional to the mixing term, A, in the scalar
potential.

of ỸS , ✓, and m :
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where the loop function is given by

g(z) =
z
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dx
1
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✓
x(1 � x)

z

◆
, (14)

which satisfies g(1) ⇠ 1.17 and g ⇠ 1

2

ln z for large z. We
show the Feynman diagram responsible for this contribu-
tion on the right of Fig. 1.

It is instructive to consider di↵erent limits of
(13). When mh ⌧ m ,mS , to logarithmic accuracy
g(m2

 /m
2
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 /m
2

S) ! 1

2

ln(m2

min

/m2

h), where m
min

is the smaller of mS and m . In this limit, the heavy
fields can be integrated out sequentially, with S and  
first, and h second. The first step is simplified by the
use of the chiral anomaly equation for  , @µ ̄�µ�5 =
2i ̄�
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 + ↵
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2

 Fµ⌫ F̃µ⌫ . This leads to the following iden-
tification:
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; ⇤
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' min(mS ,m ). (15)

Apart from a smaller value for the logarithmic cuto↵,
the result in this limit di↵ers little from the contact op-
erator case above. Even if the value of the logarithm is
not enhanced, ln(m2

min

/m2

h) ⇠ O(1), the corrections to
the Higgs diphoton rate will be limited to at most the
sub-percent level unless a fine-tuned cancellation of de is
arranged with some other CP -odd source.

We now consider a di↵erent near-degenerate limit,
|mh � mS | ⌧ mh, which turns out to be more inter-
esting as it allows the EDM constraints to be bypassed.
If the di↵erence between the masses is small, we can ap-
proximate

sin(2✓)(m2

S � m2

h) ! 2Av, (16)

and the EDM becomes
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, (18)

where in the final step we made use of the large m limit.
The limiting case (17) receives no logarithmic enhance-

ment. Moreover, the value of the A parameter can be
very small, comparable to the mass splitting between h
and S or less. An O(1 GeV) mass splitting would nat-
urally place Av2/(m2

hm ) in the O(10�2 � 10�3) range,
suppressing the EDM safely below the bound.
At the same time, as explicitly shown in Ref. [5], mod-

ifications to the h ! �� rate can be significant, and
enhancement can come from the Fµ⌫ F̃µ⌫ amplitude. Un-
like corrections to the Fµ⌫Fµ⌫ amplitudes that can en-
hance or suppress the e↵ective rate, the CP -odd chan-
nel always adds to R�� . Assuming that the mass di↵er-
ence between the singlet and the Higgs is small enough
that they cannot be separately resolved (which requires
|mS � mh| ⇠< 3 GeV with current statistics [5]), the ap-
parent increase in the diphoton rate in this model is
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and �
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ˆS!�� then R�� simplifies to a ✓-
independent expression,
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The rate for the weak eigenstate Ŝ to decay to two pho-
tons via its pseudoscalar coupling to the VL fermions is
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operators with γ: 
already severely constrained 

by e and q EDMs
McKeen, Pospelov, Ritz ’12 ΛCP > 25 TeV

̃�� ⇠ ̃�Z  10�4

operators with top: 
already severely constrained 

by e and q EDMs
Brod, Haisch, Zupan ’13 ΛCP > 2.5 TeV

Constrained indirectly: one-loop impact on Electric Dipole 
Moments (EDM): 

e.g.  de < 8.7 10-29 e cm  (ACME 13)

too strong to compete!

CP-violating Higgs couplings

HEFT2013, Oct 10 2013J. Zupan     Constraints on CPV Higgs...

electron EDM
• dominant contribution from 

2-loop Barr-Zee type diagram

• depends on electron yukawa

• setting ye=1 is then quite constraining

• the constraint vanishes, if the Higgs does not couple to electrons 

• e.g. if it only couples to the 3rd gen.

7
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CP-violating Higgs couplings

Last hopes in hττ or hbb?
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Fig. 6: The center-of-mass dependencies of the cross sections for the main Higgs production processes
at an e+e� collider. The values shown correspond to unpolarized beams and do not include the effects of
initial-stare radiation (ISR) or beamstrahlung.

Table 2: The leading-order Higgs unpolarized cross sections for the Higgs-strahlung, WW-fusion, and
ZZ-fusion processes for mH = 125 GeV at the three center-of-mass energies discussed in this document.
The quoted cross sections include the effects of ISR but do not include the effects of beamstrahlung. Also
listed are the numbers of expected events including the effects of beamstrahlung and ISR. The impact of
beamstrahlung on the expected numbers of events is relatively small, leading to an approximately 10%
reduction in the numbers of Hnene events at

p
s > 1 TeV. The cross sections and expected numbers do

not account for the enhancements possible from polarized beams.

350 GeV 1.4 TeV 3 TeV

Lint 500 fb�1 1500 fb�1 2000 fb�1

s(e+e� ! ZH) 134 fb 9 fb 2 fb
s(e+e� ! Hnene) 52 fb 279 fb 479 fb
s(e+e� ! He+e�) 7 fb 28 fb 49 fb
# ZH events 68,000 20,000 11,000
# Hnene events 26,000 370,000 830,000
# He+e� events 3,700 37,000 84,000

can be accumulated. The ZZ fusion process e+e� ! He+e� has a cross section that is approximately an
order of magnitude smaller than the WW fusion process, is also a significant source of Higgs bosons.

The measurement of the absolute coupling of the Higgs boson to the Z, which can be obtained from
the recoil mass distribution in HZ ! He+e� and HZ ! Hµ+µ� (see Section 2.1), plays a central role
in the determination of the absolute Higgs couplings at a linear collider. For this reason, it might seem
surprising that no significant running is considered at

p
s = 250 GeV, which is close to the maximum

of the Higgs-strahlung cross section (see Figure 6). However, the reduction in cross section is, in part,
compensated by the increased instantaneous luminosity achievable at a higher center-of-mass energy; the
instantaneous luminosity is expected to approximately linearly scale with the center-of-mass energy. For
this reason the precision on the coupling gHZZ at 350 GeV is comparable to that achievable at 250 GeV
for the same period of operation, as indicated in Table 3. Furthermore, for the majority of final states, the
measurement s(HZ)⇥BR(H ! X) would be slightly more precise at

p
s = 350 GeV. Initial operation

at
p

s ⇡ 350 GeV also allows access to Higgs production through the WW fusion process, providing

9

subdominant processes
that need high √s
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VVHH: probe of Higgs strong interactions 
in the SM, the Higgs is essential to prevent strong interactions in EWSB sector

(e.g. WW scattering) 
SM: a=b=d3=d4=1
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Double Higgs production processes

‰ Higgs-strahlung: dominant around
p
s = 500 GeV
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VV→HH is difficult (impossible) at FCC-ee/ILC500GeV 

We could also access VVHH coupling through ZHH
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Cut on          useful at 

An e+e- collider with                                 can 
reach a precision of ~20% on     through the 

double Higgsstrahlung process
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Figure 9: Predictions for the shifts in the left- and right-handed top quark couplings to the
Z boson predicted in a variety of models with composite Higgs bosons, from [28]. These
values are compared to the 68% confidence regions for these couplings expected from the
LHC [23] and the ILC [27].

the strong and electromagnetic interactions, and the feature that requires the inter-
vention of the Higgs field, is that the couplings depend on polarization. Making use
of the unique capability of the ILC for polarized electron and positron beams, we
will be able to measure the individual couplings of each polarization state of the top
quark to the weak interaction bosons W and Z [26–28]. The measurement accuracies
from the ILC should improve by about an order of magnitude over what is projected
for the LHC. The discrimination of the left- and right-handed couplings is a unique
feature of the ILC measurements.

These polarization-dependent couplings receive corrections in most models of new
physics beyond the Standard Model. The e↵ects are particularly large in models in
which the Higgs boson is a composite built of some more fundamental constituents.
In such models, the shifts of the ttZ couplings can be 20% or larger and are expected
to be di↵erent between the couplings to the two top quark polarization states. The
separate values of these couplings provide a powerful diagnostic of the model. Fig-
ure 9 shows a survey of theoretical predictions collected in [28]. The measurement
accuracies expected at the ILC and the LHC are also shown in the figure. A 1%
measurement of these couplings is sensitive, in models of this type, to the presence
of a 10–15 TeV Higgs-sector resonance coupling to tt. This goes beyond the ultimate
reach of the high-luminosity LHC for direct searches for such a resonance, estimated
to be about 5–6 TeV [23].

Full reconstruction of top quark pair events at the ILC will also allow us to search
for nonzero magnetic and electric dipole moments of the top quark. The latter mea-
surements provide a unique and powerful probe of CP-violating interactions of the

16

The benefit of being polarized
top specialities: 

   it decays before it hadronizes  ➾ clean probe (free from non-perturbative corrections)

it controls corrections to the Higgs potential (naturalness, stability...)

1
2

ILC sensitivity down to 0.5% (factor 10 improvement over TESLA estimates) 
➾ probe New Physics resonances up to 15-20 TeV, way above direct LHC access
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Higgs & SUSY/MSSM
no new super-particles ⇢ decoupling limit?

1 Introduction

The ATLAS and CMS Collaborations have recently presented the first evidence for a Higgs boson

with a mass of ⇠ 126 GeV [1, 2]. The �� channel yields excesses at the 2–3 � level for ATLAS

and CMS, insu�cient for a clear discovery. Yet the concordance between the ATLAS and CMS

excesses increases the likelihood that this is indeed the Higgs boson, and motivates us to study

the implications for natural electroweak breaking in the context of weak-scale supersymmetry.

In the Minimal Supersymmetric Standard Model (MSSM) the lightest Higgs boson is lighter

than about 135 GeV, depending on top squark parameters (for a review with original references,

see [3]), and heavier than 114 GeV, the LEP bound on the Standard Model Higgs [4]. A Higgs

mass of 126 GeV naively seems perfect, lying midway between the experimental lower bound and

the theoretical upper limit. The key motivation for weak-scale supersymmetry is the naturalness

problem of the weak scale and therefore we take the degree of fine-tuning [5, 6, 7, 8, 9] as a

crucial tool in guiding us to the most likely implementation of a 126 GeV Higgs. In this regard

we find that increasing the Higgs mass from its present bound to 126 GeV has highly significant

consequences. In the limit of decoupling one Higgs doublet the light Higgs mass is given by

m2

h = M2

Z cos2 2� + �2t (1)

where �2t arises from loops of heavy top quarks and top squarks and tan � is the ratio of elec-

troweak vacuum expectation values. At large tan �, we require �t ⇡ 87 GeV which means that

a very substantial loop contribution, nearly as large as the tree-level mass, is required to raise

the Higgs mass to 126 GeV.

The Higgs mass calculated at two loops in the MSSM is shown in Figure 1 as a function of

the lightest top squark mass for two values of the top squark mixing parameter Xt. The red/blue

contours are computed using the Suspect [10] and FeynHiggs [11] packages, which have di↵ering

renormalization prescriptions and the spread between them, highlighted by the shading, may

be taken as a rough measure of the current uncertainty in the calculation. For a given Higgs

mass, such as 126 GeV, large top squark mixing leads to lower and more natural top squark

masses, although the mixing itself contributes to the fine-tuning, as we will discuss. In fact,

stop mixing is required to raise the Higgs mass to 126 GeV without multi-TeV stops. Even at

maximal mixing, we must have
p
mQ3mu3 � 700 GeV (which, for degenerate soft masses, results

in squark masses hundreds of GeV heavier than have been directly probed by existing LHC

searches [12, 13]) and, as we will discuss in the next section, this implies that fine-tuning of at

least 1% is required in the MSSM, even for the extreme case of an ultra-low messenger scale of

10 TeV. Hence we seek an alternative, more natural setting for a 126 GeV Higgs.

In the next-to-minimal model (NMSSM, for a review with references, see [14]) the supersym-

metric Higgs mass parameter µ is promoted to a gauge-singlet superfield, S, with a coupling to

1

(125 GeV)2 (≥ 87GeV)2

substantial loop contribution 
from stops

high Higgs mass
implies 

susy is badly broken
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and CMS, insu�cient for a clear discovery. Yet the concordance between the ATLAS and CMS
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The Higgs mass calculated at two loops in the MSSM is shown in Figure 1 as a function of

the lightest top squark mass for two values of the top squark mixing parameter Xt. The red/blue
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renormalization prescriptions and the spread between them, highlighted by the shading, may
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mass, such as 126 GeV, large top squark mixing leads to lower and more natural top squark

masses, although the mixing itself contributes to the fine-tuning, as we will discuss. In fact,

stop mixing is required to raise the Higgs mass to 126 GeV without multi-TeV stops. Even at

maximal mixing, we must have
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mQ3mu3 � 700 GeV (which, for degenerate soft masses, results

in squark masses hundreds of GeV heavier than have been directly probed by existing LHC

searches [12, 13]) and, as we will discuss in the next section, this implies that fine-tuning of at

least 1% is required in the MSSM, even for the extreme case of an ultra-low messenger scale of

10 TeV. Hence we seek an alternative, more natural setting for a 126 GeV Higgs.
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Figure 1: The Higgs mass in the MSSM as a function of the lightest top squark mass, m
˜t1 , with

red/blue solid lines computed using Suspect/FeynHiggs. The two upper lines are for maximal
top squark mixing assuming degenerate stop soft masses and yield a 126 GeV Higgs mass for
m

˜t1 in the range of 500–800 GeV, while the two lower lines are for zero top squark mixing and
do not yield a 126 GeV Higgs mass for m

˜t1 below 3 TeV. Here we have taken tan � = 20. The
shaded regions highlight the di↵erence between the Suspect and FeynHiggs results, and may be
taken as an estimate of the uncertainties in the two-loop calculation.

the Higgs doublets, �SHuHd, that is perturbative to unified scales, thereby constraining � ⇥ 0.7

(everywhere in this paper � refers to the weak scale value of the coupling). The maximum mass

of the lightest Higgs boson is

m2

h = M2

Z cos2 2� + �2v2 sin2 2� + �2t , (2)

where here and throughout the paper we use v = 174 GeV. For �v > MZ , the tree-level

contributions to mh are maximized for tan � = 1, as shown by the solid lines in Figure 2,

rather than by large values of tan � as in the MSSM. However, even for � taking its maximal

value of 0.7, these tree-level contributions cannot raise the Higgs mass above 122 GeV, and

�t � 32 GeV is required. Adding the top loop contributions allows the Higgs mass to reach

126 GeV, as shown by the shaded bands of Figure 2, at least for low values of tan � in the region

of 1 – 2. In this case, unlike the MSSM, maximal stop mixing is not required to get the Higgs

heavy enough. In section 3 we demonstrate that, for a 126 GeV Higgs mass, the fine-tuning of

the NMSSM is significantly improved relative to the MSSM, but is still of concern.

2

large mixing 
heavy stops

1 Introduction

The ATLAS and CMS Collaborations have recently presented the first evidence for a Higgs boson

with a mass of ⇠ 126 GeV [1, 2]. The �� channel yields excesses at the 2–3 � level for ATLAS

and CMS, insu�cient for a clear discovery. Yet the concordance between the ATLAS and CMS

excesses increases the likelihood that this is indeed the Higgs boson, and motivates us to study

the implications for natural electroweak breaking in the context of weak-scale supersymmetry.

In the Minimal Supersymmetric Standard Model (MSSM) the lightest Higgs boson is lighter

than about 135 GeV, depending on top squark parameters (for a review with original references,

see [3]), and heavier than 114 GeV, the LEP bound on the Standard Model Higgs [4]. A Higgs

mass of 126 GeV naively seems perfect, lying midway between the experimental lower bound and

the theoretical upper limit. The key motivation for weak-scale supersymmetry is the naturalness

problem of the weak scale and therefore we take the degree of fine-tuning [5, 6, 7, 8, 9] as a

crucial tool in guiding us to the most likely implementation of a 126 GeV Higgs. In this regard

we find that increasing the Higgs mass from its present bound to 126 GeV has highly significant

consequences. In the limit of decoupling one Higgs doublet the light Higgs mass is given by

m2

h = M2

Z cos2 2� + �2t (1)

where �2t arises from loops of heavy top quarks and top squarks and tan � is the ratio of elec-

troweak vacuum expectation values. At large tan �, we require �t ⇡ 87 GeV which means that

a very substantial loop contribution, nearly as large as the tree-level mass, is required to raise

the Higgs mass to 126 GeV.

The Higgs mass calculated at two loops in the MSSM is shown in Figure 1 as a function of

the lightest top squark mass for two values of the top squark mixing parameter Xt. The red/blue

contours are computed using the Suspect [10] and FeynHiggs [11] packages, which have di↵ering

renormalization prescriptions and the spread between them, highlighted by the shading, may

be taken as a rough measure of the current uncertainty in the calculation. For a given Higgs

mass, such as 126 GeV, large top squark mixing leads to lower and more natural top squark

masses, although the mixing itself contributes to the fine-tuning, as we will discuss. In fact,

stop mixing is required to raise the Higgs mass to 126 GeV without multi-TeV stops. Even at

maximal mixing, we must have
p
mQ3mu3 � 700 GeV (which, for degenerate soft masses, results

in squark masses hundreds of GeV heavier than have been directly probed by existing LHC

searches [12, 13]) and, as we will discuss in the next section, this implies that fine-tuning of at

least 1% is required in the MSSM, even for the extreme case of an ultra-low messenger scale of

10 TeV. Hence we seek an alternative, more natural setting for a 126 GeV Higgs.

In the next-to-minimal model (NMSSM, for a review with references, see [14]) the supersym-

metric Higgs mass parameter µ is promoted to a gauge-singlet superfield, S, with a coupling to

1

irreducible 
fine-tuning ~ O(1%)

➾ ➾

Hall, Pinner, Ruderman ’11
+ many similar analyses

high Higgs mass
implies 

susy is badly broken

http://arXiv.org/abs/arXiv:1112.2703
http://arXiv.org/abs/arXiv:1112.2703
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DESY
LC2013 G. Dissertori

Interpretations of generic searches
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in the context of a concrete model, here MSUGRA/cMSSM

ATLA
S
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O

N
F-2013-047

here: example of scenario compatible with a low-mass Higgs as recently discovered 

in the context of a simplified MSSM scenario

eg. for m(squark) = m(gluino), exclude below ~1800 GeV

these searches typically target large Meff and large 

difference m(SUSY) - m(LSP)

the very inclusive searches keep sensitivity even for m(LSP) 

up to several hundreds of GeV (at some stage trigger-

constrained) 

recently also targeting more compressed 

spectra and higher jet multiplicities
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Cornering SUSY parameter space
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These bounds are not “robust” and don’t exclude weak scale SUSY 
but call for non-minimal models

http://arXiv.org/abs/1002.1011
http://arXiv.org/abs/1002.1011
https://ilcagenda.linearcollider.org/getFile.py/access?contribId=18&sessionId=30&resId=0&materialId=slides&confId=5840
https://ilcagenda.linearcollider.org/getFile.py/access?contribId=18&sessionId=30&resId=0&materialId=slides&confId=5840
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Saving SUSY

SUSY is Natural
but not plain vanilla

 CMSSM
 pMSSM
 NMSSM
 Hide SUSY

 reduce production (eg. split families)

 reduce MET (e.g. R-parity,   compressed 
spectrum)

 Split SUSY: 
susy scalars @ msusy, susy fermions @ mZ

 high scale SUSY: 
susy scalars & susy fermions @ msusy

unification etc...

string etc...

Giudice, Strumia ’11

SUSY solves the big hierarchy 
(or not even that)

but not the little hierarchy

Mahbubani et al

Csaki et al

http://arXiv.org/abs/arXiv:1108.6077
http://arXiv.org/abs/arXiv:1108.6077
http://arXiv.org/abs/arXiv:1212.3328%20
http://arXiv.org/abs/arXiv:1212.3328%20
http://arXiv.org/abs/arXiv:1209.4645
http://arXiv.org/abs/arXiv:1209.4645
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Saving SUSY

SUSY is Natural
but not plain vanilla

 CMSSM
 pMSSM
 NMSSM
 Hide SUSY

 reduce production (eg. split families)

 reduce MET (e.g. R-parity,   compressed 
spectrum)

 Split SUSY: 
susy scalars @ msusy, susy fermions @ mZ

 high scale SUSY: 
susy scalars & susy fermions @ msusy

unification etc...

string etc...

Giudice, Strumia ’11

SUSY solves the big hierarchy 
(or not even that)

but not the little hierarchy

Mahbubani et al

Csaki et al

Should be 
priority #1

ILC can 
complement LHC

http://arXiv.org/abs/arXiv:1108.6077
http://arXiv.org/abs/arXiv:1108.6077
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Higgsinos double-production, ,even if they are light,  
very difficult to be seen 

since one needs monojets/monophoton searches + missing ET

Mono-jet and mono-photon signatures of dark matter

Idea: Pair production of DM + some visible particles

Tevatron, LHC: Mono-jets
�–q coupling probed in jet(s) + /

E

T

q

q̄

�

�̄

CDF (1.1 fb�1): 0807.3132,
ATLAS (1 fb�1): ATLAS-CONF-2011-096,
CMS (1.1 fb�1) : CMS-PAS-EXO-11-059
Goodman Ibe Rajaraman Shepherd Tait Yu

1005.1286, 1008.1783
Rajaram Shepherd Tait Wijangco 1108.1196
Bai Fox Harnik, 1005.3797
Fox Harnik JK Tsai 1109.4398

LEP, Tevatron, LHC: Mono-�
�–f coupling probed in photon + /

E

f

f̄

�

�̄

DELPHI (650 pb�1): hep-ex/0406019, 0901.4486
CDF (2 fb�1): 0807.3132
DØ(1 fb�1): 0803.2137
CMS (1.14 fb�1): CMS-PAS-EXO-11-058
Fox Harnik JK Tsai 1103.0240, 1109.4398

Joachim Kopp Collider searches for dark matter 6

still bounds from LEP1 (>100 GeV) remain
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Open to variants:

Stops and Higgsinos are the lightest sparticles: 

MH~125 GeV obtained going beyond the MSSM

SUSY is natural but not minimal
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Figure 4: Contours of mh in the MSSM as a function of a common stop mass mQ3 = mu3 = m
˜t

and the stop mixing parameter Xt, for tan � = 20. The red/blue bands show the result from
Suspect/FeynHiggs for mh in the range 124–126 GeV. The left panel shows contours of the fine-
tuning of the Higgs mass, �mh

, and we see that �mh
> 75(100) in order to achieve a Higgs mass

of 124 (126) GeV. The right panel shows contours of the lightest stop mass, which is always
heavier than 300 (500) GeV when the Higgs mass is 124 (126) GeV.

We now consider the degree of fine-tuning [5, 6, 7, 8, 9] necessary in the MSSM to accommo-

date a Higgs of 125 GeV. We have just seen that rather heavy stops are necessary in order to

boost the Higgs to 125 GeV using the loop correction. The (well-known) problem is that heavy

stops lead to large contributions to the quadratic term of the Higgs potential, �m2

Hu
,

�m2

Hu
= �3y2t

8⇡2

�
m2

Q3
+m2

u3
+ |At|2

�
ln

✓
⇤

m
˜t

◆
, (5)

where ⇤ is the messenger scale for supersymmetry breaking. If �m2

Hu
becomes too large the

parameters of the theory must be tuned against each other to achieve the correct scale of elec-

troweak symmetry breaking. We see from equation 5 that large stop mixing also comes with a

cost because At induces fine-tuning. At large tan �, Xt ⇡ At, and maximal mixing (|At|2 = 6m2

˜t
)

introduces the same amount of fine-tuning as doubling both stop masses in the unmixed case.

In order to quantify the fine-tuning [8], it is helpful to consider a single Higgs field with a

potential

V = m2

H |h|2 +
�h

4
|h|4. (6)

7

➥     Stop mass ~ 500 GeV
           Higgisinos mass ~ 100 GeV

µ2 +m2
Hu

= �m2
h

2
≈ -(88 GeV)²

Searching SUSY @ ILC

Open to variants:

Stops and Higgsinos are the lightest sparticles: 

MH~125 GeV obtained going beyond the MSSM

SUSY is natural but not minimal
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Figure 4: Contours of mh in the MSSM as a function of a common stop mass mQ3 = mu3 = m
˜t

and the stop mixing parameter Xt, for tan � = 20. The red/blue bands show the result from
Suspect/FeynHiggs for mh in the range 124–126 GeV. The left panel shows contours of the fine-
tuning of the Higgs mass, �mh

, and we see that �mh
> 75(100) in order to achieve a Higgs mass

of 124 (126) GeV. The right panel shows contours of the lightest stop mass, which is always
heavier than 300 (500) GeV when the Higgs mass is 124 (126) GeV.

We now consider the degree of fine-tuning [5, 6, 7, 8, 9] necessary in the MSSM to accommo-

date a Higgs of 125 GeV. We have just seen that rather heavy stops are necessary in order to

boost the Higgs to 125 GeV using the loop correction. The (well-known) problem is that heavy

stops lead to large contributions to the quadratic term of the Higgs potential, �m2

Hu
,

�m2

Hu
= �3y2t

8⇡2

�
m2

Q3
+m2

u3
+ |At|2

�
ln

✓
⇤

m
˜t

◆
, (5)

where ⇤ is the messenger scale for supersymmetry breaking. If �m2

Hu
becomes too large the

parameters of the theory must be tuned against each other to achieve the correct scale of elec-

troweak symmetry breaking. We see from equation 5 that large stop mixing also comes with a

cost because At induces fine-tuning. At large tan �, Xt ⇡ At, and maximal mixing (|At|2 = 6m2

˜t
)

introduces the same amount of fine-tuning as doubling both stop masses in the unmixed case.

In order to quantify the fine-tuning [8], it is helpful to consider a single Higgs field with a

potential

V = m2

H |h|2 +
�h

4
|h|4. (6)

7

➥     Stop mass ~ 500 GeV
           Higgisinos mass ~ 100 GeV

µ2 +m2
Hu

= �m2
h

2
≈ -(88 GeV)²

A. Pomarol, lecture @ CERN, ’13
Pair produced Higgsinos are 

difficult to observe
(low ET + soft non-isolated leptons)! 
monojet/monophoton + ET searches

LEP1 bound (100GeV) still holds

Good prospects @ ILC
(see benchmarks of ILC TDR)

ILC has also immense capabilities with EW gauginos 

ILC can also help identifying SUSY thanks to its unique 
capability to determine the spin of the particles

1

2

3

http://arXiv.org/abs/1002.1011
http://arXiv.org/abs/1002.1011
http://indico.cern.ch/conferenceDisplay.py?confId=240954
http://indico.cern.ch/conferenceDisplay.py?confId=240954
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Conclusions
HEP program should aim at providing answers to fundamental questions like

 stability of the EW vacuum
 naturalness of EW symmetry breaking
 matter-antimatter asymmetry
 dynamics behind EW symmetry breaking (weak vs strong forces)
 is the Higgs boson responsible for the masses of all elementary particles?
 flavor structure via the access to rare processes 
 nature of dark matter
 exotic new physics 
...

Our understanding of the SM has reached an 
unprecedented level of sophistication/precision 

that paves the way to a discovery of New Physics

We have a rich EXP program to achieve this roadmap
Let us do it!


