Instrumentation tests in a future Califes

W. Farabolini, T. Lefevre and S. Mazzoni

 From injector to two-beam experiments and CLIC prototypes test line to general instrumentation test line. Already happening?

Instrumentation tests today (I)

- "CLIC prototypes" in califes:
 - Cavity BPMs for CLIC main beam (J. Towler, pres. 43)
 - Fast diamond BLMs (E. del Busto, CERN)
 - Electro-optical bunch length monitor for CLIC probe beam. (R. Pan, T. Lefevre, CERN)
- More recently (2014), instrumentation tests:
 - OTR Interferometer, to test shadowing and formation length in transition radiation
 - Test on silica rods as Cherenkov detector (S. Jakobsen, E. Bravin, CERN)

Why Califes as BI test facility

- BI testing is limited. LHC: long shutdowns with no testing capability. Rely on other machines: ALBA, CESR, Australian synchrotron, ATF2.
- Electron linac (E = 200 MeV) is the cheapest way to provide relativistic beams
- Photo-injector is ideal for providing modular bunch spacing:
 - single bunch possible
 - possibly bunch spacing similar to CERN beams (1ns, 5ns, 25ns, 50ns, ...)
 - pump probe experiment (wakefield study, impedance measurement, ..)

Challenges for beam instrumentation

R. Jones, 2013

- Unprecedented request for precision
 - Positioning down to well below the micron level
- Treatment of increasingly more data
 - Bunch by bunch measurements for all parameters
- Dealing with high beam powers
 - Non-invasive measurement techniques
 - Robust and reliable machine protection systems
- Dealing with the ultra-fast
 - Measurements on the femto-second timescale
- Dealing with the ultra-low
 - Measurement of very small beam currents

Challenges for beam instrumentation

- Wish list for Beam parameters:
 - Short (100 fs: CLIC, AWAKE) and long (200ps: HLC) bunches
 - Large range of beam/bunch intensity (to be defined...)
 - Possibility to study time to position correlation (Crabbing)

- ...

A possible layout (I)

Machine layout to cover BI needs based on CALIFES

Magnetic chicane
Shorten or lenghthen
100fs up to 200ps

RF deflector for crabbing

Collimator

- Reducing the bunch intensity before the Device Under Test (DUT) zones
- Reducing bunch length further in combination with RF deflector

Beam position monitor

Beam profile monitor

A possible layout (II)

Machine layout to cover BI needs based on CALIFES

- Including SR test stand for infrared, visible and UV light: Several port available
- Including Testing area for beam instruments Under Vacuum DUT
- Including Testing area for particle detectors In air DUT low intensity option

Califes for BI tests

Synchrotron radiation source

- Testing optical detectors/techniques with short photon probes over a wide range of wavelength (IR, visible, UV)
- Potential interest for (HL)-HLC with longer (200 ps sigma) bunch length
- λ_{cutoff} can reach 200 nm (OK for LHC). SR divergence approx. 4 mrad (300 μrad for LHC @ 7 TeV).
- Possible use for developing
 - Beam halo monitor, longitudinal density monitor, ...

Califes for BI tests

Under vacuum DUT area

- Independent vacuum zone with easy access and pumping capabilities
- Including steering magnets to move the beam around
- Equipped with a Permanent instrumentation test stand
 - Used for beam cross calibration: beam size, position and bunch length
 - But also using ...
 - BTV station for screen and imaging system development
 - Pick-up for providing fast EM signal for testing electronic acquisition system
 - Coherent diffraction slit as a source for GHz-THz
- Possible use for developing
 - Beam position monitor, Wall current monitor, fast beam transformer, Ionization gas monitor, Wire scanner...
 - ideal for short bunch length measurement electro-optical techniques

Califes for BI tests

In-air DUT area

- Possibility to decrease the beam intensity to low or very low values
- Possible use for developing Beam Loss monitors and Particle detectors
- Radiation damage test for sensors / electronics

Conclusion

- CALIFES potentially very interesting as BI test facility.
- Bridge the gap for sub- ps bunch length measurements for CLIC and AWAKE
- Tests on SR based beam halo diagnostics for LHC.

Awake electron beam requirements

Parameter	Baseline Phase	Range to check
Beam Energy	16 MeV	10- 20 MeV
Energy spread (σ)	0.5 %	< 0.5 % ?
Bunch Length (σ)	4 ps	0.3-10 ps
Beam Focus Size (σ)	250 μm	0.25 – 1mm
Normalized Emittance (rms)	2 mm mmrad	0.5 - 5 mm mrad
Bunch Charge	0.2 nC	0.1 - 1 nC

Possible utilisation of CTF3 infrastructure

- Test of Beam diagnostic for CERN accelerators (including HL-LHC program)
 - General optimisation detection technique and method
 - Require longer bunches up to 200ps sigma (LHC type beams)
 - Currently test of fast Beam loss monitor and Luminosity monitor on-going on Califes
 - Possible future example, HL-LHC crab cavities diagnostic, ...
- Test of Electron beam diagnostic for CERN projects: AWAKE, FCC and CLIC
 - Califes should provide shorter bunches (AWAKE and CLIC 150-300fs sigma)
 - DB beam injector possibly located in CTF3 DB linac after 2016
 - Continue the development of non-interceptive beam profile monitors
- Irradiation facility for ESA- JUICE (JUpiter ICy moons Explorer)
 - Requiring electron beam irradiation due to presence of electron cloud in the vicinity of Jupiter and its moons
 - Beam energy ranging from 10-200MeV
 - Required fluence of 10⁷/10⁸ electron/cm²

