

PiO RECONSTRUCTION TOWARD FLAVOR TAGGING IMPROVEMENT

Masakazu Kurata
The University of Tokyo

LCWS14, 10/06/2014-10/10/2014

INTRODUCTION

- For flavor tagging improvement
 - Vertex mass is the key to separate heavy/light flavor vertex
 - Many pi0s will escape from B/D vertex \rightarrow checked that using MC truth
 - Mass resolution will be degrade due to escaping neutrals
 - Is there possibility to recover pi0s which escape from vertices?
- Towards pi0 attachment to vertices Studying pi0 reconstruction
 - Gamma finder using shower profile in calorimeters
 - π⁰ finder solving gamma pairing
- First step is to find gammas distinguish from neutral hadrons
 - Similar to lepton ID
 - Basically same method as lepton ID Bayesian approach
- Second step is to reconstruct pi0s pairing of 2 gammas
 - Similar to jet pairing
 - Using Bayesian approach(naïve Bayes)

GAMMA ID

Using naïve Bayes

- Posterior probability: $P(\gamma|x) = \frac{P(x|\gamma) \cdot P(\gamma)}{P(x)} = \frac{P(x|\gamma) \cdot P(\gamma)}{P(x|\gamma) \cdot P(\gamma) + P(x|had) \cdot P(had)}$
- Identify as gamma with $P(\gamma|x)$ >threshold (need to optimize)

Specific for this study:

- Check 2 gammas at the same time because of correlation between 2 gammas
- Preparing P.D.F.s for 1st gamma(large energy) and 2nd gamma(small energy)
- Choosing pi0s from primary vertex(L_{decay} from IP < 0.3mm)

Key Issues:

- Using shower profile in calorimeters Same as Lepton ID
 e.g.) my talks@AWLC14
- Using traditional variables E(γ), Ecal/(Ecal+Hcal)
- Can't use cone energy because not isolated

VARIABLES TO BE USED

- For 1st gamma finding
- Signal: gamma with large energy from pi0(come from primary vertex)
- Background: neutral hadrons

RESULTS

Gamma ID eff. & background suppression eff.

sample	Signal	background
First γ eff. (%)	98.4±0.3	2.3 ± 0.1
Second γ eff.(%)	98.9 ± 0.3	2.4 ± 0.1
γ pair eff. (%)	97.3±0.3	2.0 ± 0.1

 γ pair eff. for background is the case when both of the gamma candidates are fake

GAMMA PAIRING TO RECONSTRUCT PIOS

- Using naïve Bayes
 - Posterior probability:

$$P(\pi^{0}|x) = \frac{P(x|\pi^{0}) \cdot P(\pi^{0})}{P(x)} = \frac{P(x|\pi^{0}) \cdot P(\pi^{0})}{P(x|\pi^{0}) \cdot P(\pi^{0}) + P(x|wrong) \cdot P(wrong)}$$

- Identify as gamma pair from pi0 with $P(\pi^0|x)$ >threshold (need to optimize)
- Key point: pi0 decay kinematics

$$m_{\pi^0}^2 = 2E_{\gamma 1}E_{\gamma 2}(1-\cos\theta)$$

- So, 2gammas' variables are highly correlated
- Avoid mis-pairing when many gammas jam in very small area
 - In many case, pi0s are flying in same direction!
 - So far, no very nice idea…

FOR THIS ANALYSIS

- Introducing 2D-likelihood to include correlation effect
 - E(γ 1)+E(γ 2) v.s. θ & E(γ 2) v.s. θ
 - p.d.f.s from these distributions

Pi0 Wrong pair

- o Distribution of other gammas inside the cone of decay angle
 - To avoid mis-pairing of gammas located in small area

ENERGY EXPECTATION OF 2 GAMMAS

- o In 2-body decay, energy range of 2 daughters can be predicted:
 - →allowed energy range of gammas is:

$$\frac{E_{\pi 0}}{2}(1 - \beta_{\pi 0}) \le E_{\gamma} \le \frac{E_{\pi 0}}{2}(1 + \beta_{\pi 0})$$

- O How are 2 gamma energies given from pi0 decay?
 - Check energy ratios: $\frac{E_{\gamma 1}}{E_{max}}$, $\frac{E_{min}}{E_{\gamma 2}}$, $\frac{E_{\gamma 2}}{E_{max}}$
 - Distributions are quite different between correct pairs and wrong pairs!

Pi0

Wrong pair

VARIABLES TO BE USED

Signal: pi0s from primary vertex(L_{decav} from IP < 0.3mm)

O Background: all the combinations of wrong gamma pairs

PROBLEM OF PIO RECONSTRUCTION IN THE EVENTS

- o Pi0 reconstruction: maximize likelihood(minimize χ^2) globally in the event
- o If, num. of pi0s in the event is known, it is very easy!
- o Big problem: num. of pi0s in the event is a free parameter!!!
- So, trivial answer to meet the condition(maximum likelihood) IS:
 - →no pi0s in the event!! (Log likelihood is of course 0(max)!)
- To avoid it: impose a penalty for unpaired gammas
- So define the information criterion:

$$IC = -2 \sum \log L(\pi^0) + k \cdot N(unpaired \gamma)$$

• Gamma pairing is performed according to IC:

→minimize IC

 \circ If k(>0.0) is large, pairing of gammas is boosted

→it is necessary to optimize k!

K OPTIMIZATION SO FAR

 K will be set at the point where num. of pi0s are almost same as the capacity of pi0 reconstruction matched with MC truth

 $\bullet \mathsf{Set} \; k = 0.03 \cdot \log N(\gamma)$

K PARAMETER EFFECT

- O How k parameter works?
 - $k = \alpha \cdot \log N(\gamma)$
 - Change α to each value
 - ullet Saturation @large lpha is due to gamma pairing posterior threshold effect

RESULTS

Good pairing eff. & mis-pairing eff.

	Correct pair	Wrong pair
eff. (%)	46.0 ± 0.3	54.0 ± 0.4

- Just counting the num. of good pairing pi0s in the reconstructed pi0s
- Definition of the efficiency is difficult…
- Bad pairing eff. is the problem…
 - When gammas are located in small area
 - In many case, gammas tend to jam in small area
- Need to check the degradation when neutral hadrons are contaminated
 - But we have only to check the mis-pairing effect on vertex mass recovery!

CHECKING KINEMATICS

Pi0 decay kinematics

MC truth
Pi0 finder

SUMMARY AND PROSPECTS

- Construct pi0 reconstruction tools for vertex mass recovery
 - ullet Gamma mis-ID eff. is \sim 2.0% while gamma ID eff. is \sim 97%
 - Gamma pairing eff. is \sim 50%
 - Pi0 decay kinematics can reproduct well

Problems

- Gamma pairing eff. is too low due to gammas jamming in small area Such gammas are important!
- Decay kinematics can't identify good combination of 2 gammas kinematics OK
- Global IC minimization algorithm is not good!
 - Consuming too much CPU time a few second/vertex(momentum correction of gamma is necessary on each vertex)
 - Is there good global minimization algorithm? need help
- Method to global minimization(maximization)
 - o IC is really a good estimator?
- Prospects: How does pi0 reconstruction work on vertex mass recovery?
 - In my next talk!