

Higgs mixing in the NMSSM and light higgsinos

Yutaro SHOJI
Tohoku University, Japan
@LCWS14 in Belgrade

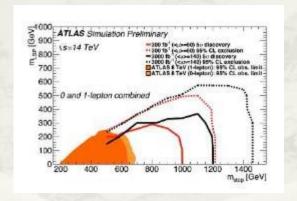
arXiv:1407.0955/hep-ph (submitted to JHEP)

Collaborators: Kwan Sik Jeong (IBS), Masahiro Yamaguchi

What if the Higgs potential is not fine—tuned?
$$\delta m_{H_u}^2 = -\frac{3y_t^2}{8\pi^2} \underbrace{(2m_{\tilde{t}}^2 + |A_t|^2)\ln\frac{\Lambda}{m_{\tilde{t}}} + \cdots}_{\text{should not be so large}}$$

What if the Higgs potential is not fine–tuned?
$$\delta m_{H_u}^2 = -\frac{3y_t^2}{8\pi^2} \underbrace{(2m_{\tilde{t}}^2 + |A_t|^2)\ln\frac{\Lambda}{m_{\tilde{t}}} + \cdots}_{\text{should not be so large}}$$

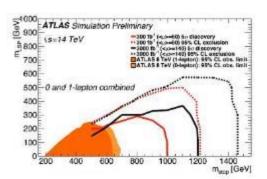
What if the stops are discovered at the next run of the LHC?



What if the Higgs potential is not fine—tuned?

$$\delta m_{H_u}^2 = -\frac{3y_t^2}{8\pi^2} \underbrace{(2m_{\tilde{t}}^2 + |A_t|^2) \ln \frac{\Lambda}{m_{\tilde{t}}} + \cdots}_{\text{should not be so large}}$$

What if the stops are discovered at the next run of the LHC?

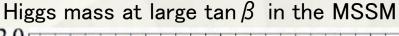


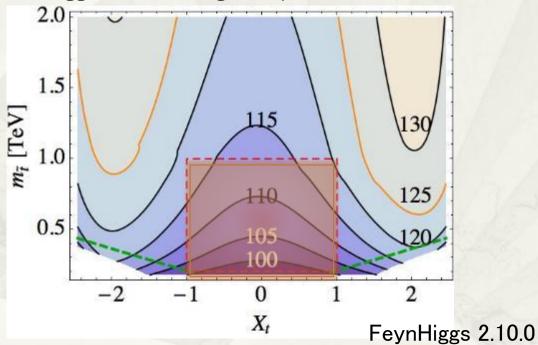
What if the R-Parity is violated or the stops has a compressed spectrum with the LSP?

The Higgs mass tells us...

ATLAS: ~125.4GeV

CMS: ~125.0GeV



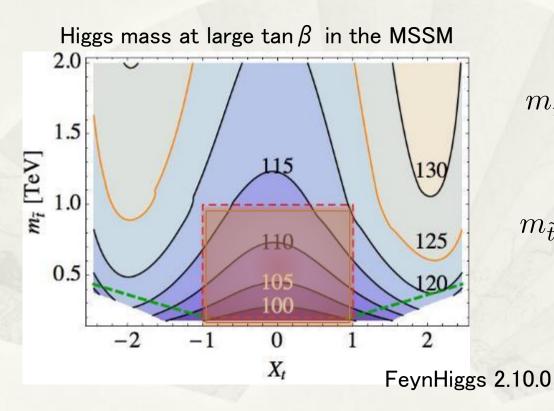


$$m_{\tilde{t}}^2 = \sqrt{m_{\tilde{t}_L}^2 m_{\tilde{t}_R}^2}$$
$$X_t = (A_t - \mu \cot \beta)/m_{\tilde{t}}$$

The Higgs mass tells us...

ATLAS: ~125.4GeV

CMS: ~125.0GeV



$$m_{\tilde{t}} = 1 \text{TeV}$$
 $m_h \lesssim 120 \text{GeV}$

$$m_{\tilde{t}}^2 = \sqrt{m_{\tilde{t}_L}^2 m_{\tilde{t}_R}^2}$$
$$X_t = (A_t - \mu \cot \beta)/m_{\tilde{t}}$$

We need to go beyond the MSSM

MSSM + Singlet Z_3 invariant NMSSM, nMSSM, PQ-NMSSM,...

$$W = \lambda S H_u H_d + \cdots$$

MSSM + Singlet

Z_3 invariant NMSSM, nMSSM, PQ-NMSSM,...

$$W = \lambda S H_u H_d + \cdots$$

F-term potential

$$\Delta m_h^2 = (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta$$

MSSM + Singlet

Z_3 invariant NMSSM, nMSSM, PQ-NMSSM,...

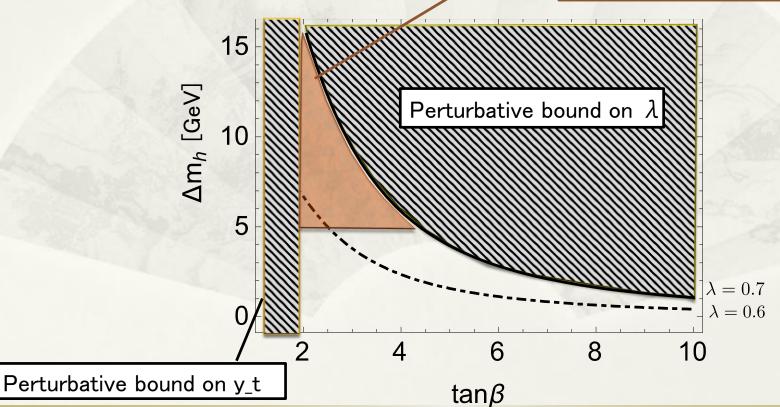
$$W = \lambda S H_u H_d + \cdots$$

F-term potential

$$\Delta m_h^2 = (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta$$

However,

Parameter region is limited



If the singlet boson is light,

$$\Delta m_h^2 \simeq (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + (m_h^2 - m_s^2) \theta_{mix}^2$$

 $\tan \beta$ independent enhancement

To carry out the analysis as model independently as possible, ...

arbitrary (no CPV)

$$W = (MSSM Yukawa) + \lambda SH_uH_d + f(S)$$

$$0.01 < \lambda < 1$$

arbitrary (no CPV)

$$W = (MSSM Yukawa) + \lambda SH_uH_d + f(S)$$

mass matrix

$$\begin{array}{ll}
\Pi \\
\begin{pmatrix}
m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta \\
-(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} \\
\lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta
\end{pmatrix}$$

$$\Pi$$

$$-(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta$$

$$-(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta}$$

$$\lambda v \Lambda \cos 2\beta$$

$$\begin{array}{c} \lambda v (2\mu - \Lambda \sin 2\beta) \\ \lambda v \Lambda \cos 2\beta \\ m_{\hat{s}}^2 \end{array} \right)$$

$$\Lambda, m_{\hat{s}}^2, b$$
 :model dependent parameters $\mu = \lambda \langle S \rangle$ tan $\beta = \langle Hu \rangle / \langle Hd \rangle$

arbitrary (no CPV)

$$W = (MSSM Yukawa) + \lambda SH_uH_d + f(S)$$

mass matrix

$$\begin{pmatrix}
m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta \\
-(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} \\
\lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta
\end{pmatrix}$$

$$T$$
 $v^2-m_Z^2)\sin2eta\cos2eta \ (2-m_Z^2)\sin^22eta\pm rac{2b}{2}$

$$-(\lambda^2 v^2 - m_Z^2)\sin^2 2\beta + \frac{2b}{\sin 2\beta}$$
$$\lambda v \Lambda \cos 2\beta$$

$$\hat{S}$$

$$\lambda v(2\mu - \Lambda \sin 2\beta)$$
 $\lambda v \Lambda \cos 2\beta$
 $m_{\hat{s}}^2$

Z boson mass + Q.C.

(H)
$$600 {
m GeV} < m_{\tilde{t}} < 1 {
m TeV}$$

$$105 \text{GeV} < m_0 < 120 \text{GeV}$$

(L)
$$200 {
m GeV} < m_{\tilde{t}} < 600 {
m GeV}$$

$$\rightarrow 100 \text{GeV} < m_0 < 115 \text{GeV}$$

$$W = (MSSM Yukawa) + \lambda SH_uH_d + f(S)$$

$$\hat{h} \qquad \qquad \hat{S} \\ \begin{pmatrix} m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & \lambda v (2\mu - \Lambda \sin 2\beta) \\ -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} & \lambda v \Lambda \cos 2\beta \\ \hline \lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta & m_{\hat{s}}^2 \end{pmatrix}$$

 $\lambda \mu$

$$W = (MSSM Yukawa) + \lambda SH_uH_d + f(S)$$

$$\hat{h} \\ \begin{pmatrix} m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & \lambda v (2\mu - \Lambda \sin 2\beta) \\ -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} & \lambda v \Lambda \cos 2\beta \\ \hline \lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta & m_{\hat{s}}^2 \end{pmatrix}$$

 λ^2

$$W = (MSSM Yukawa) + \lambda SH_uH_d + f(S)$$

$$\hat{h}$$

$$\begin{pmatrix} m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & \lambda v (2\mu - \Lambda \sin 2\beta) \\ -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} & \lambda v \Lambda \cos 2\beta \\ \lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta & m_{\hat{s}}^2 \end{pmatrix}$$

 $\frac{\lambda}{2}$

For each $\tan \beta$, the Higgsino mass can always be read off from the mass matrix.

The SM-like Higgs boson

$$\hat{h} \qquad \qquad \hat{S} \\ \begin{pmatrix} m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & \lambda v (2\mu - \Lambda \sin 2\beta) \\ -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} & \lambda v \Lambda \cos 2\beta \\ \lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta & m_{\hat{s}}^2 \end{pmatrix}$$
 Diagonalize

$$h = \hat{h}\cos\theta_1\cos\theta_2 - \hat{H}\sin\theta_1 - \hat{s}\cos\theta_1\sin\theta_2$$

The SM-like Higgs boson

$$\hat{h} \qquad \hat{S}$$

$$\begin{pmatrix} m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & \lambda v (2\mu - \Lambda \sin 2\beta) \\ -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} & \lambda v \Lambda \cos 2\beta \\ \lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta & m_{\hat{s}}^2 \end{pmatrix}$$

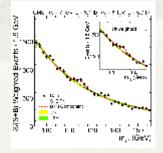
$$\hat{H}$$

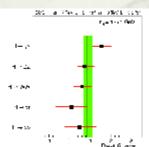
$$-(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta$$
$$-(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta}$$
$$\lambda v \Lambda \cos 2\beta$$

$$\lambda v(2\mu - \Lambda \sin 2\beta)$$
 $\lambda v \Lambda \cos 2\beta$
 $m_{\hat{\epsilon}}^2$

Diagonalize

$$h = \hat{h}\cos\theta_1\cos\theta_2 - \hat{H}\sin\theta_1 - \hat{s}\cos\theta_1\sin\theta_2$$
$$m_h \simeq 126 \text{GeV} \qquad h \simeq \hat{h}$$





The SM-like Higgs boson

$$\hat{h}$$

$$\begin{pmatrix}
m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta \\
-(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta \\
\lambda v (2\mu - \Lambda \sin 2\beta)
\end{pmatrix}$$

$$H \over (\lambda^2 v^2 - m_Z^2) \sin 2 ag{3}$$

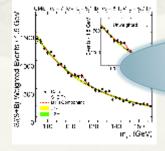
$$\begin{pmatrix} m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & \lambda v (2\mu - \Lambda \sin 2\beta) \\ -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} & \lambda v \Lambda \cos 2\beta \\ \lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta & m_{\hat{s}}^2 \end{pmatrix}$$

$$\hat{S}$$

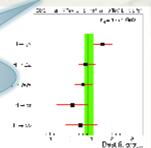
$$\lambda v(2\mu - \Lambda \sin 2\beta)$$
 $\lambda v \Lambda \cos 2\beta$
 $m_{\hat{s}}^2$

Diagonalize

$$h = \hat{h}\cos\theta_1\cos\theta_2 - \hat{H}\sin\theta_1 - \hat{s}\cos\theta_1\sin\theta_2$$
$$m_h \simeq 126 \text{GeV} \qquad h \simeq \hat{h}$$

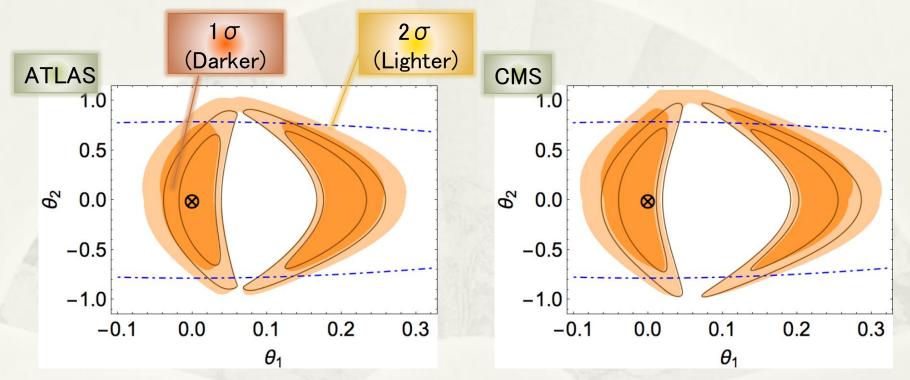


Let us quantify it.



Higgs signal strengths

 χ ^2 value on the (θ 1, θ 2) plane (bb, γ γ , WW, ZZ and τ τ channels are used.)



(Brown lines indicate 1 and 2 σ bands w/o SUSY loop contributions)

$$\tan \beta = 10$$

 χ 2 is minimized with changing the parameters below

$$|X_t| < 1$$
 200GeV $< m_{\tilde{t}} < 600$ GeV 100GeV $< |\mu|$ $\lambda < 1$

The MSSM Higgs boson

$$\hat{h} \qquad \qquad \hat{S} \\ \begin{pmatrix} m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & \lambda v (2\mu - \Lambda \sin 2\beta) \\ -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} & \lambda v \Lambda \cos 2\beta \\ \lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta & m_{\hat{s}}^2 \end{pmatrix}$$

$$H = \hat{h}(c_2c_3s_1 - s_2s_3) + \hat{H}c_1c_3 - \hat{s}(c_3s_1s_2 + c_2s_3)$$

$$c_i = \cos\theta_i, \ s_i = \sin\theta_i$$

The MSSM Higgs boson

$$\hat{h}$$

$$\begin{pmatrix}
m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta \\
-(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} \\
\lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta
\end{pmatrix}$$

$$\Pi$$

$$-(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta$$

$$-(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta}$$

$$\lambda v \Lambda \cos 2\beta$$

$$\begin{array}{c} \lambda v(2\mu - \Lambda \sin 2\beta) \\ \lambda v \Lambda \cos 2\beta \\ m_{\hat{s}}^2 \end{array} \right)$$

Diagonalize

$$H = \hat{h}(c_2c_3s_1 - s_2s_3) + \hat{H}c_1c_3 - \hat{s}(c_3s_1s_2 + c_2s_3)$$

$$c_i = \cos\theta_i, \ s_i = \sin\theta_i$$

$$350 {\rm GeV} \lesssim m_H \lesssim 1 {\rm TeV}$$

 $b->s\gamma$

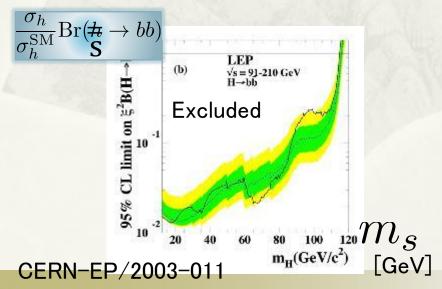
Let us take $m_H = 800 \text{GeV}$ The Higgs sector should not be fine-tuned

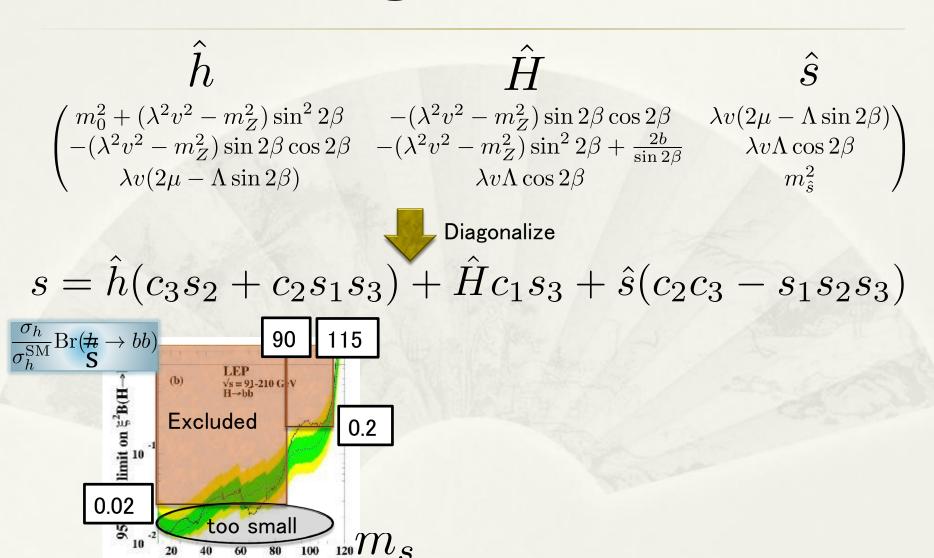
$$\hat{h} \qquad \qquad \hat{S} \\ \begin{pmatrix} m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & \lambda v (2\mu - \Lambda \sin 2\beta) \\ -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} & \lambda v \Lambda \cos 2\beta \\ \lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta & m_{\hat{s}}^2 \end{pmatrix}$$

Diagonalize
$$s = \hat{h}(c_3s_2 + c_2s_1s_3) + \hat{H}c_1s_3 + \hat{s}(c_2c_3 - s_1s_2s_3)$$

$$\hat{h} \qquad \qquad \hat{S} \\ \begin{pmatrix} m_0^2 + (\lambda^2 v^2 - m_Z^2) \sin^2 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & \lambda v (2\mu - \Lambda \sin 2\beta) \\ -(\lambda^2 v^2 - m_Z^2) \sin 2\beta \cos 2\beta & -(\lambda^2 v^2 - m_Z^2) \sin^2 2\beta + \frac{2b}{\sin 2\beta} & \lambda v \Lambda \cos 2\beta \\ \lambda v (2\mu - \Lambda \sin 2\beta) & \lambda v \Lambda \cos 2\beta & m_{\hat{s}}^2 \end{pmatrix}$$
 Diagonalize

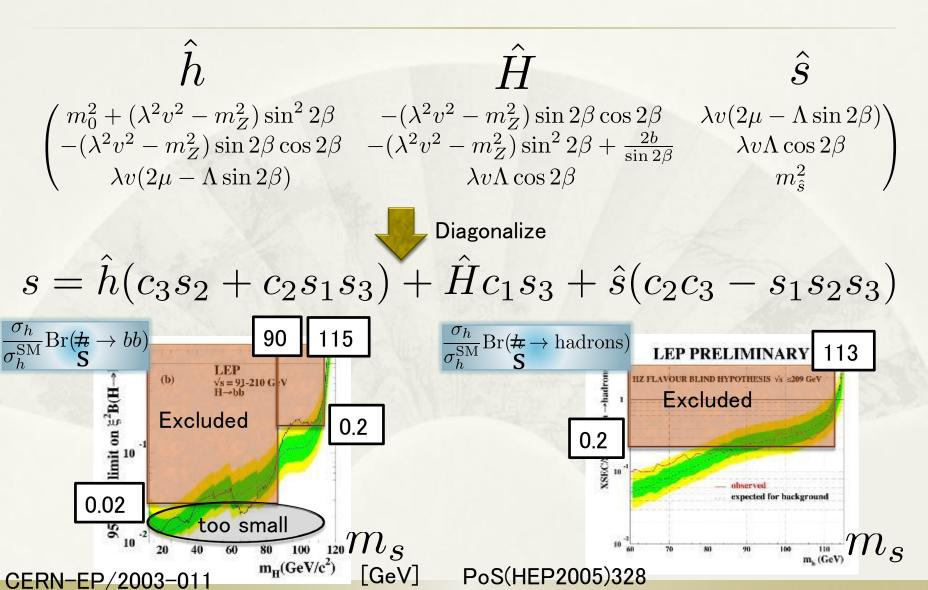
$$s = \hat{h}(c_3s_2 + c_2s_1s_3) + \hat{H}c_1s_3 + \hat{s}(c_2c_3 - s_1s_2s_3)$$





 $m_{H}^{}(GeV/c^2)$

CERN-EP/2003-011



For large m_H,

$$|\lambda\mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 \text{GeV}}\right)^2 \text{GeV}$$

For large m_{_}H,

$$|\lambda\mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 \text{GeV}}\right)^2 \text{GeV}$$

$$m_0 \lesssim 120 {\rm GeV}$$

$$\lambda^2 \simeq \frac{m_Z^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2)(m_h^2 - m_s^2) \right]$$

For large m_{_}H,

$$|\lambda\mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 \text{GeV}}\right)^2 \text{GeV}$$

$$\lambda^2 \simeq \frac{m_Z^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2)(m_h^2 - m_s^2) \right]$$

Can be bounded below!

Upper bound on μ

For large m_{_}H,

$$|\lambda\mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 \text{GeV}}\right)^2 \text{GeV}$$

$$\lambda^2 \simeq \frac{m_2^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2)(m_h^2 - m_s^2) \right]$$

If
$$\theta_1^2 + \theta_2^2 \lesssim 0.19$$

$$\lambda > \frac{m_Z}{v} \cong 0.52$$

For large m_{_}H,

$$|\lambda\mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 \text{GeV}}\right)^2 \text{GeV}$$

$$\lambda^2 \simeq \frac{m_2^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2)(m_h^2 - m_s^2) \right]$$

If
$$\theta_1^2 + \theta_2^2 \lesssim 0.19$$

$$\lambda > \frac{m_Z}{v} \cong 0.52$$

$$\lambda > \frac{m_Z}{v} \cong 0.52$$
 $|\mu| \lesssim 350 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 \text{GeV}}\right)^2 \text{GeV}$

For large m_H,

$$|\lambda\mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 \text{GeV}}\right)^2 \text{GeV}$$

$$\lambda^2 \simeq \frac{m_Z^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2)(m_h^2 - m_s^2) \right]$$

$$\mathbf{If}\ \theta_1^2 + \theta_2^2 \lesssim 0.19$$

$$\lambda \lesssim \frac{m_Z}{v} \simeq 0.52$$

$$\lambda \lesssim \frac{m_Z}{v} \simeq 0.52$$
 $|\mu| \lesssim 350 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 {\rm GeV}}\right)^2 {\rm GeV}$

A few exceptions

The higgsinos tend to be light but there are a few exceptions.

A. small
$$\tan \beta$$
 (e.g. less than 3)
$$|\lambda \mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 {\rm GeV}}\right)^2 {\rm GeV}$$

A few exceptions

The higgsinos tend to be light but there are a few exceptions.

A. small
$$\tan \beta$$
 (e.g. less than 3)
$$|\lambda \mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \underbrace{\left(\frac{10}{\tan \beta}\right)}_{\text{(=>Anyway, we don't need mixings···)}}^{\text{(=>Anyway, we don't need mixings···)}}$$

A few exceptions

The higgsinos tend to be light but there are a few exceptions.

A. small
$$\tan \beta$$
 (e.g. less than 3)
$$|\lambda \mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 {\rm GeV}}\right)^2 {\rm GeV}$$

(=>Anyway, we don't need mixings...)

B. Suppressed s->bb

$$\lambda^2 \simeq \frac{m_Z^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2)(m_h^2 - m_s^2) \right]$$

A few exceptions

The higgsinos tend to be light but there are a few exceptions.

A. small $\tan \beta$ (e.g. less than 3)

$$|\lambda\mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 \text{GeV}}\right)^2 \text{GeV}$$

(=>Anyway, we don't need mixings…)

B. Suppressed s->bb

Light boson searches

$$\lambda^2 \simeq \frac{m_Z^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2)(m_h^2 - m_s^2) \right]$$

A few exceptions

The higgsinos tend to be light but there are a few exceptions.

A. small $\tan \beta$ (e.g. less than 3)

$$|\lambda\mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 \text{GeV}}\right)^2 \text{GeV}$$

(=>Anyway, we don't need mixings…)

B. Suppressed s->bb

Light boson searches

$$\lambda^2 \simeq \frac{m_Z^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2)(m_h^2 - m_s^2) \right]$$

C. large mixing angles + large tan β

$$\lambda^2 \simeq \frac{m_Z^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2) (m_h^2 - m_s^2) \right]$$

A few exceptions

The higgsinos tend to be light but there are a few exceptions.

A. small $\tan \beta$ (e.g. less than 3)

$$|\lambda\mu| \simeq \frac{m_H^2}{2v \tan \beta} \frac{2|\theta_1 \theta_2|}{\theta_1^2 + \theta_2^2} \lesssim 185 \left(\frac{10}{\tan \beta}\right) \left(\frac{m_H}{800 \text{GeV}}\right)^2 \text{GeV}$$

(=>Anyway, we don't need mixings…)

B. Suppressed s->bb

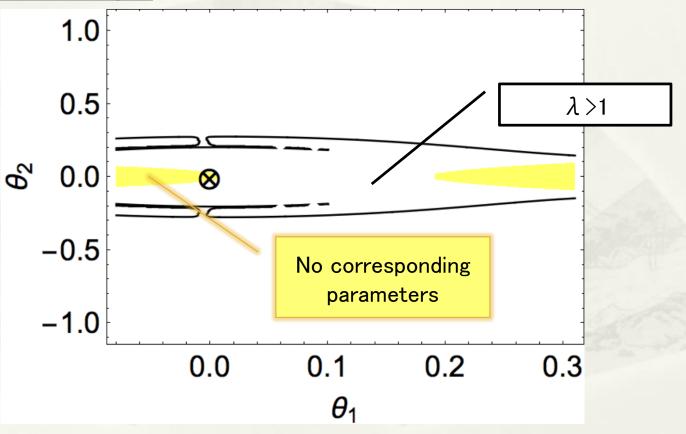
Light boson searches

$$\lambda^2 \simeq \frac{m_Z^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2)(m_h^2 - m_s^2) \right]$$

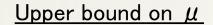
C. large mixing angles + large $\tan \beta$ Higgs coupling measurement

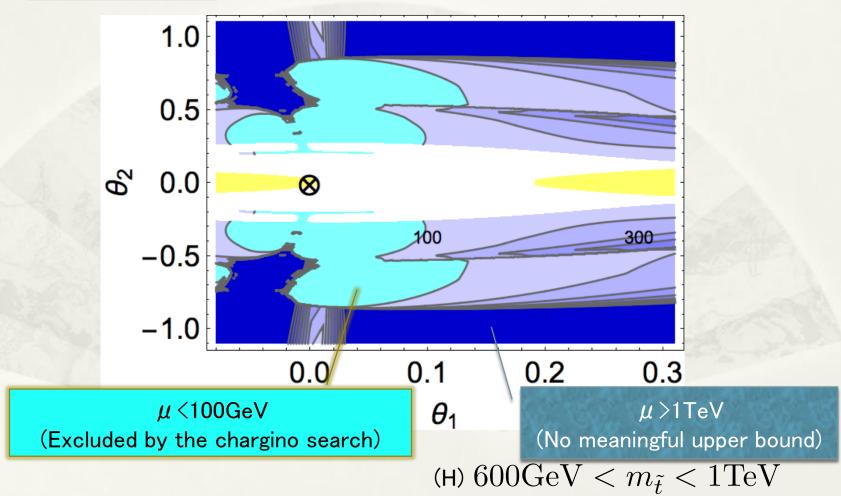
$$\lambda^2 \simeq \frac{m_Z^2}{v^2} + \frac{\tan^2 \beta}{4v^2} \left[(m_h^2 - m_0^2) - (\theta_1^2 + \theta_2^2)(m_h^2 - m_s^2) \right]$$

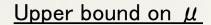
Available parameter region

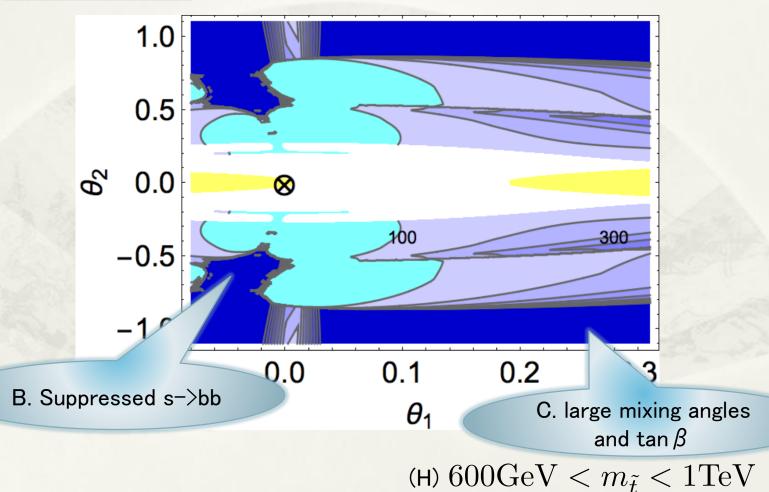


(H) $200 {
m GeV} < m_{\tilde{t}} < 600 {
m GeV}$

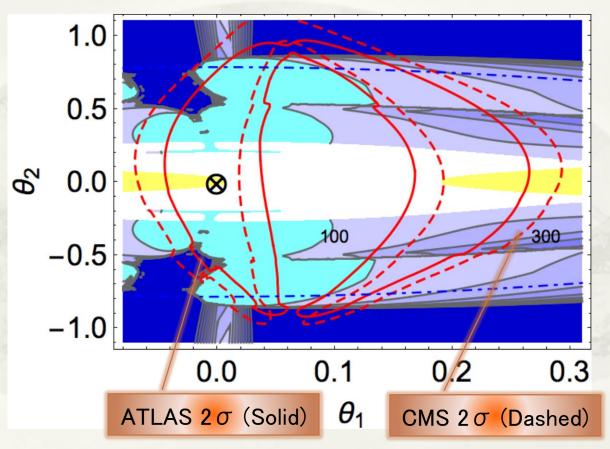




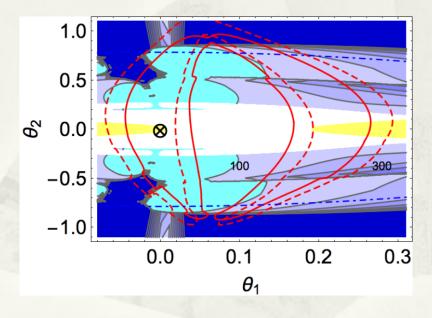




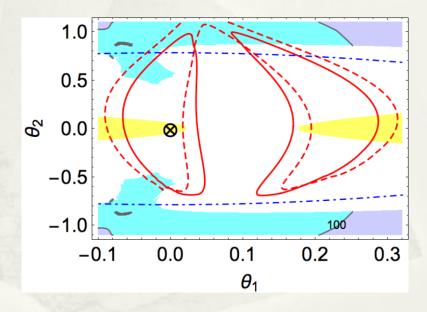
Higgs signal strengths



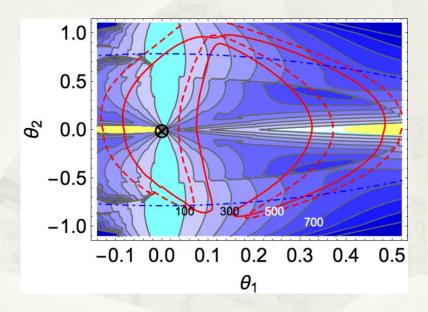
(H) $600 {
m GeV} < m_{\tilde t} < 1 {
m TeV}$



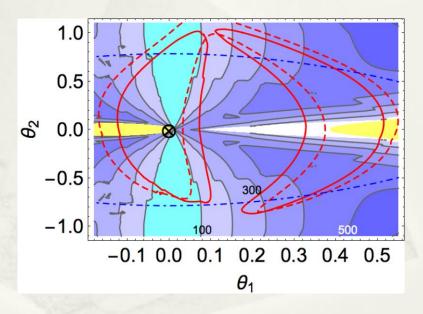
(L) $200 { m GeV} < m_{\tilde{t}} < 600 { m GeV}$



(H) $600 {
m GeV} < m_{\tilde{t}} < 1 {
m TeV}$



(L) $200 {
m GeV} < m_{\tilde{t}} < 600 {
m GeV}$



BACKUPS

Analysis

- the Higgs signal streangths -

To get the preferred region in θ plane, let us assume

- No systematic errors
- •Independent Gaussian distributions [Two linear combinations of γ γ channels (ggF and VBF/VH) are used]

	WW/ggF	ZZ/ggF	bb/VH- VBF	ττ/VH- VBF	γγ/X	γγ/Y
ATLAS	0.99 ± 0.30	1.43±0.38	1.09 ± 0.34		1.49±0.36	0.61 ± 0.75
CMS	0.68 ± 0.20	0.92±0.28	1.15±0.62	1.10 ± 0.41	1.42 ± 0.31	0.89 ± 0.61

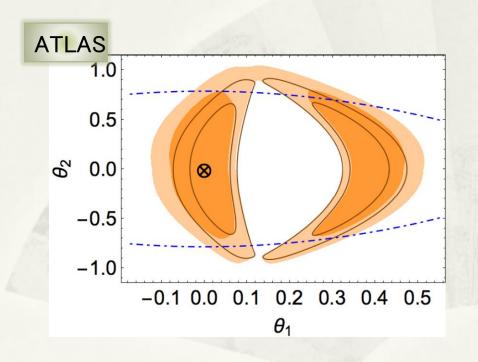
$$\mu^{X} - 1 = (\mu^{ggF} - 1)\cos\varphi + (\mu^{VH/VBF} - 1)\sin\varphi$$
$$\mu^{Y} - 1 = -(\mu^{ggF} - 1)\sin\varphi + (\mu^{VH/VBF} - 1)\cos\varphi$$

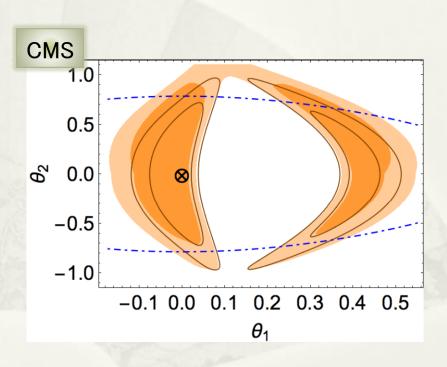
 $\cos \varphi = 0.98(ATLAS), 0.97(CMS)$

hep-ex/1307.1427, ATLAS-CONF-2014-009, CMS-PAS-HIG-13-005, hep-ex/1408.7084, hep-ex1407.0558

Higgs signal strengths

Tan $\beta = 5$



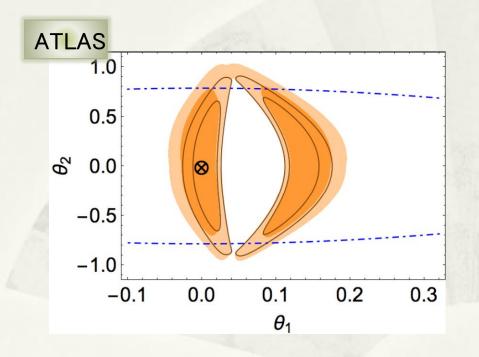


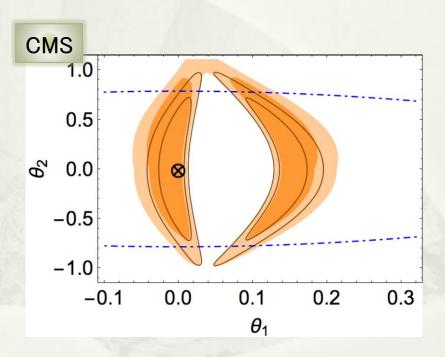
 χ 2 is minimized with changing the parameters below

 $|X_t| < 1 \quad 200 \text{GeV} < m_{\tilde{t}} < 600 \text{GeV} \quad 100 \text{GeV} < |\mu|$

Higgs signal strengths

Tan $\beta = 15$

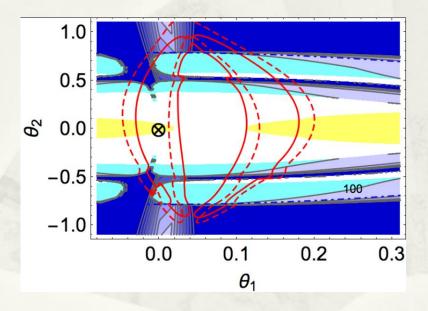




 χ 2 is minimized with changing the parameters below

 $|X_t| < 1 \quad 200 \text{GeV} < m_{\tilde{t}} < 600 \text{GeV} \quad 100 \text{GeV} < |\mu|$

(H) $600 {
m GeV} < m_{\tilde{t}} < 1 {
m TeV}$



(L) $200 {
m GeV} < m_{\tilde{t}} < 600 {
m GeV}$

