Slepton and bosino property determination in $\tilde{\tau}$ coanihilation SUSY DM models

Mikael Berggren¹

¹DESY, Hamburg

LCWS14, Belgrade, October 2014

《曰》《圖》《曰》《曰》 되는

Outline

This is a status report !!!

Outline

- A bench-mark point: STC4
 - STC4 @ 500 GeV
 - STC4 @ 500 GeV: Globaly
 - STC4 @ 500 GeV: First light e
 _R
 - STC4 @ 500 GeV: Full speed sleptons
 - STC4 @ 500 GeV: Full speed τ₁ and DM

Outlook & Conclusions

4 A N

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

• Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.

• Hard - wrt. things like *H* only, WIMP only: Lots to Disentangle. Specifically:

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between τ
 ₁τ
 ₂ and τ
 ₂τ
 ₂ thresholds.
- Clean vs. high cross-section.
- What does it tell us about DM?

Mikael Berggren (DESY)

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

• Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.

• Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle. Specifically:

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between τ
 ₁τ
 ₂ and τ
 ₂τ
 ₂ thresholds.
- Clean vs. high cross-section.
- What does it tell us about DM?

Mikael Berggren (DESY)

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

• Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.

• Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle. Specifically:

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between τ
 ₁τ
 ₂ and τ
 ₂τ
 ₂ thresholds.
- Clean vs. high cross-section.
- What does it tell us about DM?

Mikael Berggren (DESY)

물 이 이 물 이 물 님

Image: A mathematical states and the states

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

• Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.

• Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle. Specifically:

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- What does it tell us about DM?

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

• Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.

• Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle. Specifically:

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- What does it tell us about DM?

Mikael Berggren (DESY)

SUSY property determination

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

• Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.

• Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle. Specifically:

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- What does it tell us about DM?

Mikael Berggren (DESY)

SUSY property determination

Suppose SUSY is there and has a rich spectrum of sparticles accessible at the ILC. Then:

• Easy - wrt. things like \tilde{H} only, WIMP only: Lots to see.

• Hard - wrt. things like \tilde{H} only, WIMP only: Lots to Disentangle. Specifically:

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- What does it tell us about DM?

What we look for and like to measure is:

- NLSP pairs ⇔ Missing energy and momentum + pairs of the SM partner (τ̃₁ gives τ, ẽ gives e, ĩ gives t gives jet, ...)
 - Note:
 - Amount of intesting shull might span a wide range...Eg. small mass-difference between heavy sparticles gives large missing (5, but little missing p.
 - M. Linderformal (M. S. M. S
- Anything but NLSP pairs: Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

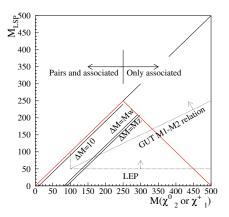
《曰》《圖》《曰》《曰》 되는

What we look for and like to measure is:

- NLSP pairs ⇔ Missing energy and momentum + pairs of the SM partner (τ̃₁ gives τ, ẽ gives e, t̃ gives t gives jet, ...)
 - Note:
 - Amount of missing stuff might span a wide range. Eg. small mass-difference between heavy sparticles gives large missing E, but little missing p.
 - If NLSP is a bosino, SM partner is a IVB, possibly far off-shell. At small mass differences, the set of SM particles might be non-obvious.
- Anything but NLSP pairs: Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

What we look for and like to measure is:

- NLSP pairs ⇔ Missing energy and momentum + pairs of the SM partner (τ̃₁ gives τ, ẽ gives e, ĩ gives t gives jet, ...)
 - Note:
 - Amount of missing stuff might span a wide range. Eg. small mass-difference between heavy sparticles gives large missing E, but little missing p.
 - If NLSP is a bosino, SM partner is a IVB, possibly far off-shell. At small mass differences, the set of SM particles might be non-obvious.
- Anything but NLSP pairs: Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.


What we look for and like to measure is:

- NLSP pairs ⇔ Missing energy and momentum + pairs of the SM partner (τ̃₁ gives τ, ẽ gives e, ĩ gives t gives jet, ...)
 - Note:
 - Amount of missing stuff might span a wide range. Eg. small mass-difference between heavy sparticles gives large missing E, but little missing p.
 - If NLSP is a bosino, SM partner is a IVB, possibly far off-shell. At small mass differences, the set of SM particles might be non-obvious.
- Anything but NLSP pairs: Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

Bosino signatures

Depending on order of μ , M_1 , and M_2 , and on GUT-scale U(1) \otimes SU(2) mass-unification:

- $\mu << M_1, M_2$:
 - LSP and NLSP both higgsino, very low ΔM.
- $M_2 < M_1 << \mu$:
 - LSP Wino, NLSP is $\tilde{\chi}_1^{\pm}$, and is close.
- *M*₁ < *M*₂ << μ :
- If GUT $M_1 M_2$ relation, $\Delta M < M_{LSP}$.

Background from SM:

• Real missing energy + pair of SM-particles = di-boson production, with neutrinos:

- $WW \rightarrow \ell \nu \ell \nu$
- $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow ff\gamma$, with γ un-detected.

Background from SM:

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow f\bar{f}\gamma$, with γ un-detected.

Background from SM:

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow f\bar{f}\gamma$, with γ un-detected.

Background from SM:

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow f\bar{f}\gamma$, with γ un-detected.

Observables:

Observable	Gives	lf
Edges (or average and		not too far from
width)	Masses	threshold
Shape of spectrum	Spin	
Angular distributions	Mass, Spin	
Invariant mass distributions		
from full reconstruction	Mass	cascade decays
Angular distributions from		
full reconstruction	Spin, CP,	masses known
Un-polarised Cross-section		
in continuum	Mass, coupling	
Polarised Cross-section	Mass, coupling,	
in continuum	mixing	
Decay product polarisation	Mixing	$\tilde{\tau}$ decays
Threshold-scan	Mass(es), Spin	
		・ ロ ト ・ 個 ト ・ 直 ト ・ 直 ト

Observables:

Observable	Gives	lf		
Edges (or average and		not too far from		
width)	Masses	threshold		
Shape of spectrum	Spin			
Angular distributions	Mass, Spin			
Invariant mass distrib from full reconstruction				
Angular distributions Determine nature of DM				
full reconstruction and it's properties		sses known		
Un-polarised Cross-section				
in continuum	Mass, coupling			
Polarised Cross-section	Mass, coupling,			
in continuum	mixing			
Decay product polarisation	Mixing	$\tilde{\tau}$ decays		
Threshold-scan	Mass(es), Spin			

Consider $e^+e^- \rightarrow XX$, followed by $X \rightarrow UY$, where Y is a detectable (SM) particle. Then

•
$$E_{Y max(min)} = \frac{E_{Beam}}{2} \left(1 - \left(\frac{M_U}{M_X} \right)^2 \right) \left(1_{(-)}^+ \sqrt{1 - \left(\frac{M_X}{E_{Beam}} \right)^2} \right)$$
, so that
• $M_X = E_{Beam} \sqrt{1 - (\Delta/\Sigma)^2}$
• $M_U = E_{Deamy} \sqrt{1 - (\Delta/\Sigma)^2} \sqrt{1 - \Sigma/E_{Deamy}}$

$$(\Delta = E_{Y max} - E_{Y min}; \Sigma = E_{Y max} + E_{Y min})$$

If the spectrum is flat (eg if *X* is a sfermion) between the end-points:

• $\langle E_Y \rangle = (E_{Y max} + E_{Y min})/2$ and $\sigma_{E_Y} = \sqrt{(E_{Y max} - E_{Y min})/12}$, which gives

•
$$M_U = E_{Beam} \sqrt{1 - \frac{2 \langle E_Y \rangle}{E_{Beam}}} \sqrt{1 - \left(\frac{6\sigma_{E_Y}^2}{\langle E_Y \rangle}\right)^2}$$

• $M_X = E_{Beam} \sqrt{1 - \left(\frac{12\sigma_{E_Y}^2}{\langle E_Y \rangle}\right)^2}$

SUSY property determination

Mikael Berggren (DESY)

Consider $e^+e^- \rightarrow XX$, followed by $X \rightarrow UY$, where Y is a detectable (SM) particle. Then

•
$$E_{Y max(min)} = \frac{E_{Beam}}{2} \left(1 - \left(\frac{M_U}{M_X} \right)^2 \right) \left(1 \left(\frac{+}{-} \sqrt{1 - \left(\frac{M_X}{E_{Beam}} \right)^2} \right)$$
, so that
• $M_X = E_{Beam} \sqrt{1 - (\Delta/\Sigma)^2}$
• $M_U = E_{Beam} \sqrt{1 - (\Delta/\Sigma)^2} \sqrt{1 - \Sigma/E_{Beam}}$
 $(\Delta = E_Y max - E_Y min; \Sigma = E_Y max + E_Y min)$

If the spectrum is flat (eg if X is a sfermion) between the end-points:

• $< E_Y >= (E_{Y max} + E_{Y min})/2$ and $\sigma_{E_Y} = \sqrt{(E_{Y max} - E_{Y min})/12}$, which

•
$$M_U = E_{Beam} \sqrt{1 - \frac{2 \langle E_Y \rangle}{E_{Beam}}} \sqrt{1 - \left(\frac{6\sigma_{E_Y}^2}{\langle E_Y \rangle}\right)^2}$$

• $M_X = E_{Beam} \sqrt{1 - \left(\frac{12\sigma_{E_Y}^2}{\langle E_Y \rangle}\right)^2}$

Mikael Berggren (DESY)

Consider $e^+e^- \rightarrow XX$, followed by $X \rightarrow UY$, where Y is a detectable (SM) particle. Then

•
$$E_{Y max(min)} = \frac{E_{Beam}}{2} \left(1 - \left(\frac{M_U}{M_X} \right)^2 \right) \left(1_{(-)}^+ \sqrt{1 - \left(\frac{M_X}{E_{Beam}} \right)^2} \right)$$
, so that
• $M_X = E_{Beam} \sqrt{1 - (\Delta/\Sigma)^2}$
• $M_U = E_{Beam} \sqrt{1 - (\Delta/\Sigma)^2} \sqrt{1 - \Sigma/E_{Beam}}$
 $(\Delta = E_Y max - E_Y min; \Sigma = E_Y max + E_Y min)$

If the spectrum is flat (eq if X is a sfermion) between the end-points:

• $\langle E_Y \rangle = (E_Y \max + E_Y \min)/2$ and $\sigma_{E_Y} = \sqrt{(E_Y \max - E_Y \min)/12}$, which

•
$$M_U = E_{Beam} \sqrt{1 - \frac{2 \langle E_Y \rangle}{E_{Beam}}} \sqrt{1 - \left(\frac{6\sigma_{E_Y}^2}{\langle E_Y \rangle}\right)}$$

• $M_X = E_{Beam} \sqrt{1 - \left(\frac{12\sigma_{E_Y}^2}{\langle E_Y \rangle}\right)^2}$

Consider $e^+e^- \rightarrow XX$, followed by $X \rightarrow UY$, where Y is a detectable (SM) particle. Then

•
$$E_{Y max(min)} = \frac{E_{Beam}}{2} \left(1 - \left(\frac{M_U}{M_X} \right)^2 \right) \left(1 \left(\frac{+}{-} \sqrt{1 - \left(\frac{M_X}{E_{Beam}} \right)^2} \right)$$
, so that
• $M_X = E_{Beam} \sqrt{1 - (\Delta/\Sigma)^2}$
• $M_U = E_{Beam} \sqrt{1 - (\Delta/\Sigma)^2} \sqrt{1 - \Sigma/E_{Beam}}$
 $(\Delta = E_Y max - E_Y min; \Sigma = E_Y max + E_Y min)$

If the spectrum is flat (eg if X is a sfermion) between the end-points:

• $< E_Y >= (E_Y _{max} + E_Y _{min})/2$ and $\sigma_{E_Y} = \sqrt{(E_Y _{max} - E_Y _{min})/12}$, which gives

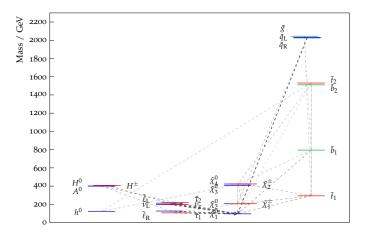
•
$$M_U = E_{Beam} \sqrt{1 - \frac{2 \langle E_Y \rangle}{E_{Beam}}} \sqrt{1 - \left(\frac{6\sigma_{E_Y}^2}{\langle E_Y \rangle}\right)^2}$$

• $M_X = E_{Beam} \sqrt{1 - \left(\frac{12\sigma_{E_Y}^2}{\langle E_Y \rangle}\right)^2}$

Mikael Berggren (DESY)

Example: STC4

STC4-8

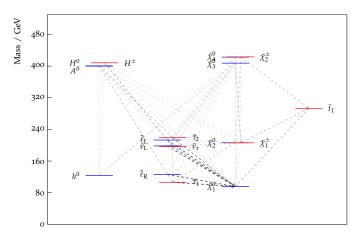

- 11 parameters.
- Separate gluino
- Higgs, un-coloured, and coloured scalar parameters separate

Parameters chosen to deliver all constraints (LHC, LEP, cosmology, low energy).

- At $E_{CMS} = 500$ GeV:
 - All sleptons available.
 - No squarks.
 - Lighter bosinos, up to $\tilde{\chi}^0_3$ (in $e^+e^-
 ightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_3$)

(See H. Baer, J. List, arXiv:1307:0782.)

Full STC4 mass-spectrum



문 문

< 2> < 2>

< 17 ▶

Zoomed STC4 mass-spectrum

Mikael Berggren (DESY)

3 LCWS, Oct 2014 11/24

Channels and observables at 250, 350 and 500 GeV

Channel	Threshold	Available at	Can give
$ ilde{ au}_1 ilde{ au}_1$	212	250	$M_{\tilde{\tau}_1}, \tilde{\tau}_1$ nature,
			au polarisation
$ ilde{\mu}_{ m R} ilde{\mu}_{ m R}$	252	250+	+ $M_{ ilde{\mu}_{\mathrm{R}}}, M_{ ilde{\chi}_{1}^{0}}, ilde{\mu}_{\mathrm{R}}$ nature
$\tilde{e}_R \tilde{e}_R$	252	250+	+ $M_{\tilde{e}_{R}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{e}_{R}$ nature
$ ilde{\chi}_1^0 ilde{\chi}_2^{0^{*)}}$	302	350	+ $M_{\tilde{\chi}^0_2}, M_{\tilde{\chi}^0_1}$, nature of $\tilde{\chi}^0_1, \tilde{\chi}^0_2$
$\tilde{\tau}_1 \tilde{\tau}_2^{*)}$	325	350	+ $M_{\tilde{\tau}_2} \theta_{mix} \tilde{\tau}$
$\tilde{e}_R \tilde{e}_L^{*)}$	339	350	+ $M_{\tilde{e}_L}$, $\tilde{\chi}_1^0$ mixing, \tilde{e}_L nature
$\tilde{\nu}_{\tilde{\tau}}\tilde{\nu}_{\tilde{\tau}}$	392	500	7 % visible BR ($\rightarrow \tilde{\tau}_1 W$)
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm^{*)}}$	412	500	+ $M_{\tilde{\chi}_1^{\pm}}$, nature of $\tilde{\chi}_1^{\pm}$
$\tilde{e}_L \tilde{e}_L^{*)}$	416	500	+ $M_{\tilde{e}_{L}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{e}_{L}$ nature
$ ilde{\mu}_{ m L} ilde{\mu}_{ m L}{}^{*)}$	416	500	+ $M_{\tilde{\mu}_{\mathrm{R}}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{\mu}_{\mathrm{R}}$ nature
$\tilde{\tau}_2 \tilde{\tau}_2^{*)}$	438	500	+ $M_{\tilde{\tau}_2}, M_{\tilde{\chi}_1^0}, \tilde{\tau}_2$ nature, $\theta_{mix \ \tilde{\tau}}$
$ ilde{\chi}_1^0 ilde{\chi}_3^{0^{*)}}$	503	500+	+ $M_{ ilde{\chi}_3^0}, M_{ ilde{\chi}_1^0}$, nature of $ ilde{\chi}_1^0, ilde{\chi}_3^0$

*): Cascade decays.

+ invisible
$$\tilde{\chi}_1^0 \tilde{\chi}_1^0$$
, $\tilde{\nu}_{\tilde{e} \ \tilde{\mu}} \tilde{\nu}_{\tilde{e} \ \tilde{\mu}}$.

Mikael Berggren (DESY)

A D M A A A M M

- The $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}, E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For ẽ_Ror μ̃_R: :E_{l,min} = 7.3 GeV, E_{l,max} = 99.2 GeV: Neither γγ nor WW → lνlν background severe.
- For pol=(1,-1): σ(ẽ_Rẽ_R) = 1.3 pb !
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}, E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For ẽ_Ror μ̃_R: :E_{I,min} = 7.3 GeV, E_{I,max} = 99.2 GeV: Neither γγ nor WW → IνIν background severe.
- For pol=(1,-1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}, E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For ẽ_Ror μ̃_R: :E_{I,min} = 7.3 GeV, E_{I,max} = 99.2 GeV: Neither γγ nor WW → IνIν background severe.
- For pol=(1,-1): σ(ẽ_Rẽ_R) = 1.3 pb !
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.3 \text{ GeV}$, $E_{\tau,max} = 45.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 52.4 \text{ GeV}, E_{\tau,max} = 150.0 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For ẽ_Ror μ̃_R: :E_{I,min} = 7.3 GeV, E_{I,max} = 99.2 GeV: Neither γγ nor WW → IνIν background severe.
- For pol=(1,-1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 70 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

STC4 @ 500 GeV

Strategy:

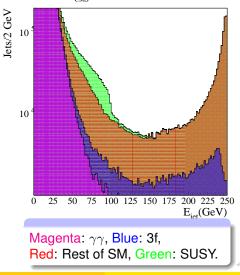
- Global preselection to reduce SM, while efficiency for all signals stays above \sim 90 %.
- The further select for all sleptons ($\tilde{e}_R, \tilde{e}_L, \tilde{\mu}_R, \tilde{\mu}_L, \tilde{\tau}_1$).
- Next step: specific selections for \tilde{e}_R and $\tilde{\mu}_R$, for \tilde{e}_L and $\tilde{\mu}_L$, and for $\tilde{\tau}_1$.
- Last step: add particle id to separate ẽ and μ̃, special cuts for τ̃₁.
- Check results both for RL and LR beam-polarisation.

In the following, a mix of new results from STC4+SGV@DBD and SPS1a'+FullSim@LOI will be shown

STC4 @ 500 GeV

Strategy:

- Global preselection to reduce SM, while efficiency for all signals stays above \sim 90 %.
- The further select for all sleptons ($\tilde{e}_R, \tilde{e}_L, \tilde{\mu}_R, \tilde{\mu}_L, \tilde{\tau}_1$).
- Next step: specific selections for \tilde{e}_R and $\tilde{\mu}_R$, for \tilde{e}_L and $\tilde{\mu}_L$, and for $\tilde{\tau}_1$.
- Last step: add particle id to separate ẽ and μ̃, special cuts for τ̃₁.
- Check results both for RL and LR beam-polarisation.


In the following, a mix of new results from STC4+SGV@DBD and SPS1a'+FullSim@LOI will be shown

STC4 global

After a few very general cuts:

- Missing energy > 100
- Less than 10 charged tracks
- $|\cos \theta_{Ptot}| < 0.95$
- Exactly two τ-jets
- Visible mass < 300 GeV
- θ_{acop} between 0.15 and 3.1

E_{CMS}=500 GeV, Pol=+0.8,-0.3

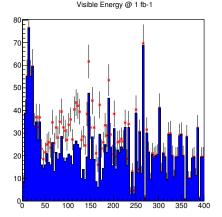
STC4 early discovery: \tilde{e}_R

Early discovery channel:

crossection in the pb-range.

- Few simple cuts.
- Simple observable: *E_{vis}*: Peak and width gives *M_{ẽ_R}* and *M_{χ⁰}*.
- See the signal appearing after

```
1 fb<sup>-1</sup>
5 fb<sup>-1</sup>
25 fb<sup>-1</sup>
100 fb<sup>-1</sup>
```

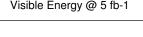

- 100 lb
- 250 fb⁻¹

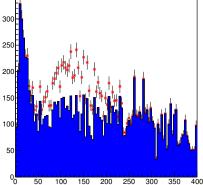
Early discovery channel:

crossection in the pb-range.

- Few simple cuts.
- Simple observable: *E_{vis}*: Peak and width gives *M_{ẽ_R}* and *M_{χ⁰}*.
- See the signal appearing after

- 5 fb⁻¹
- 25 fb⁻¹
- 100 fb⁻¹

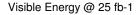

・ 同 ト ・ 日 ト ・ 日 日

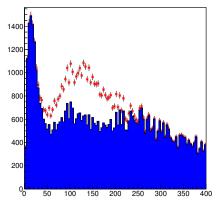

16/24

Early discovery channel:

crossection in the pb-range.

- Few simple cuts.
- Simple observable: *E_{vis}*: Peak and width gives *M_{ẽR}* and *M_{χ⁰}*.
- See the signal appearing after
 - 1 fb⁻¹
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻
 - 250 fb⁻¹

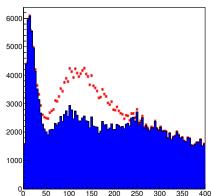

《曰》《圖》《曰》《曰》 되는


Early discovery channel:

crossection in the pb-range.

- Few simple cuts.
- Simple observable: *E_{vis}*: Peak and width gives *M*_{ẽR} and *M*_{^x₁}.
- See the signal appearing after

- 5 fb⁻¹
- 25 fb⁻¹
- 100 fb⁻¹
- 250 fb⁻¹

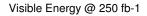

< 17 ▶

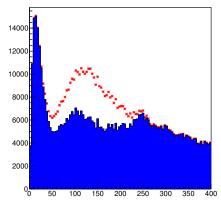
12

Early discovery channel:

crossection in the pb-range.

- Few simple cuts.
- Simple observable: *E_{vis}*: Peak and width gives *M*_{ẽ_R} and *M*_{^x₁}.
- See the signal appearing after
 - 1 fb⁻¹
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻¹
 - 250 fb⁻¹


Visible Energy @ 100 fb-1


・ 同 ト ・ 日 ト ・ 日 ト

Early discovery channel:

crossection in the pb-range.

- Few simple cuts.
- Simple observable: *E_{vis}*: Peak and width gives *M_{ẽ_R}* and *M_{χ⁰}*.
- See the signal appearing after
 - 1 fb⁻¹
 - 5 fb⁻¹
 - 25 fb⁻¹
 - 100 fb⁻¹
 - 250 fb⁻¹

< 🗇 🕨

• Selections for $\tilde{\mu}$ and \tilde{e} :

- Correct charge.
- P_T wrt. beam and one ℓ wrt the other.
- Tag and probe, ie. accept one jet if the other is "in the box".

• Further selections for R:

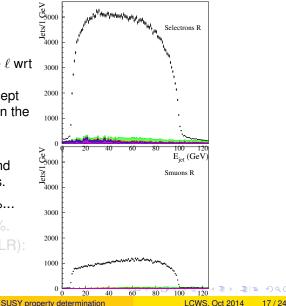
- Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- ... or beam-pol -80%,30%.

• Further selections for L (LR):

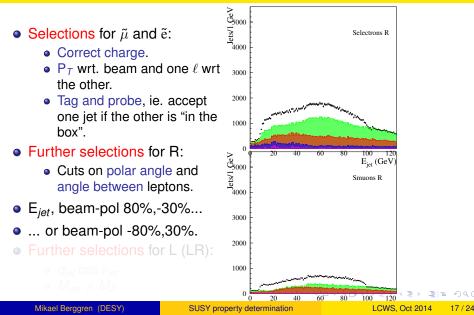
- $q_{jet} \cos \theta_{jet}$
- $M_{vis} \neq M_Z$

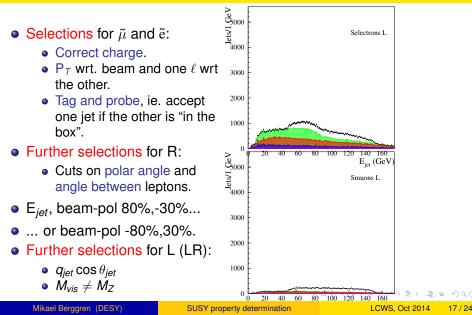
• Selections for $\tilde{\mu}$ and \tilde{e} :

- Correct charge.
- P_T wrt. beam and one ℓ wrt the other.
- Tag and probe, ie. accept one jet if the other is "in the box".

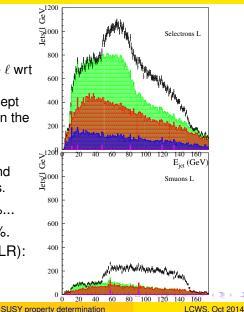

• Further selections for R:

- Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- ... or beam-pol -80%,30%.

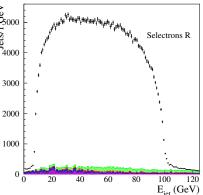

• Further selections for L (LR):


- $q_{jet} \cos \theta_{jet}$
- $M_{vis} \neq M_Z$

- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- ... or beam-pol -80%,30%.
- Further selections for L (LR):
 - q_{jet} cos θ_{jet}
 M_{vis} ≠ M_Z

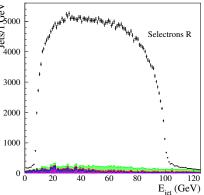


Mikael Berggren (DESY)


- Selections for $\tilde{\mu}$ and \tilde{e} :
 - Correct charge.
 - P_T wrt. beam and one ℓ wrt the other.
 - Tag and probe, ie. accept one jet if the other is "in the box".
- Further selections for R:
 - Cuts on polar angle and angle between leptons.
- E_{jet}, beam-pol 80%,-30%...
- ... or beam-pol -80%,30%.
- Further selections for L (LR):
 - $q_{jet} \cos \theta_{jet}$
 - *M_{vis}* ≠ *M_Z*

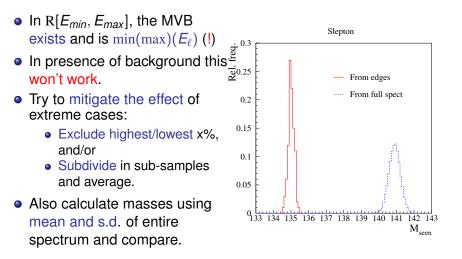
17/24

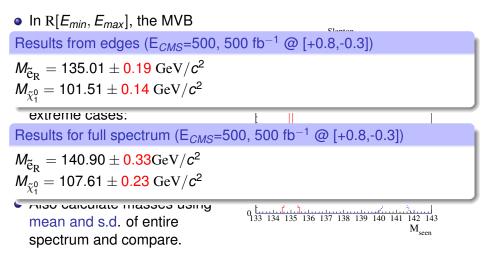
- In R[E_{min}, E_{max}], the MVB exists and is min(max)(E_ℓ) (!)
- In presence of background this won't work.
- Try to mitigate the effect of extreme cases:
 - Exclude highest/lowest x%, and/or
 - Subdivide in sub-samples and average.
- Also calculate masses using mean and s.d. of entire spectrum and compare.


- In R[E_{min}, E_{max}], the MVB exists and is min(max)(E_ℓ) (!)
- In presence of background this won't work.
- Try to mitigate the effect of extreme cases:
 - Exclude highest/lowest x% and/or
 - Subdivide in sub-samples and average.
- Also calculate masses using mean and s.d. of entire spectrum and compare.

LCWS, Oct 2014 18 / 24

イロト イポト イヨト イヨト ヨ


- In R[E_{min}, E_{max}], the MVB exists and is min(max)(E_ℓ) (!)
- In presence of background this won't work.
- Try to mitigate the effect of extreme cases:
 - Exclude highest/lowest x%, and/or
 - Subdivide in sub-samples and average.
- Also calculate masses using mean and s.d. of entire spectrum and compare.



< 6 b

LCWS, Oct 2014 18 / 24

• In $R[E_{min}, E_{max}]$, the MVB LSP exists and is $\min(\max)(E_{\ell})$ (!) • In presence of background this won't work. From edges From full spect 0.25 Try to mitigate the effect of extreme cases: 0.2 Exclude highest/lowest x%, 0.15 and/or Subdivide in sub-samples 0.1 and average. 0.05 Also calculate masses using 107 108 mean and s.d. of entire 109 $\mathrm{M}_{\mathrm{seep}}$ spectrum and compare.

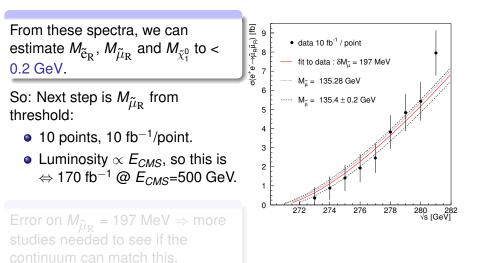
$\tilde{\mu}_{\rm R}$ threshold scan

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 0.2 GeV.

$\tilde{\mu}_{\mathbf{R}}$ threshold scan

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 0.2 GeV.

So: Next step is $M_{\tilde{\mu}_{\rm R}}$ from threshold:

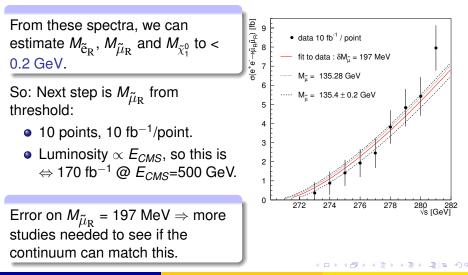

• 10 points, 10 fb $^{-1}$ /point.

• Luminosity $\propto E_{CMS}$, so this is $\Leftrightarrow 170 \text{ fb}^{-1} @ E_{CMS} = 500 \text{ GeV}.$

Error on $M_{\tilde{\mu}_{\rm R}}$ = 197 MeV \Rightarrow more studies needed to see if the continuum can match this.

Mikael Berggren (DESY)

$\tilde{\mu}_{\mathbf{R}}$ threshold scan



Mikael Berggren (DESY)

LCWS, Oct 2014 19 / 24

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

$\tilde{\mu}_{\mathbf{R}}$ threshold scan

Mikael Berggren (DESY)

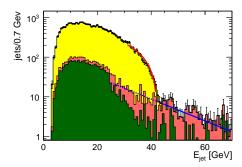
STC4 sleptons @ 500 GeV: $\tilde{\tau}_1$

Selections for $\tilde{\tau}_1$:

- Correct charge.
- P_T wrt. beam and one τ wrt the other.
- $M_{jet} < M_{ au}$
- *E_{vis}* < 120 GeV,*M_{vis}* ∈ [20, 87] GeV.
- Cuts on polar angle and angle between leptons.
- Little energy below 30 deg, or not in τ-jet.
- At least one *τ*-jet should be hadronic.
- Anti- $\gamma\gamma$ likelihood.

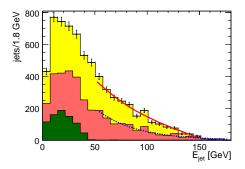
Mikael Berggren (DESY)

< 17 ▶

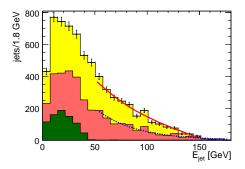

A B >
 A B >
 A

Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
- Fit line to (data-background


Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:
 - *˜*₁: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - [~]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit)


Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit)
 Mikeel Berggren (DESY)
 SUSY pr

Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).
 Mikeel Berggren (DESY)
 SUSY property determination

Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

- Only the upper end-point is relevant.
- Background subtraction:

Results for $\tilde{\tau}_1$

 $M_{ ilde{ au}_1} = 107.73^{+0.03}_{-0.05} \text{GeV}/c^2 \oplus 1.3\Delta(M_{ ilde{\chi}_1^0})$ The error from $M_{ ilde{\chi}_1^0}$ largely dominates

1.8 GeV

Results for $\tilde{\tau}_2$

 $M_{{\widetilde au}_2}=183^{+11}_{-5}{
m GeV}/c^2\oplus 18\Delta(M_{{\widetilde \chi}^0_1})$ The error from the endpoint largely dominates

• ги ше ю (ааа-раскугоина

fit)

Mikael Berggren (DESY)

Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).

1.8 GeV

200

- Only the upper end-point is relevant.
- Background subtraction:

Results from cross-section for $\tilde{\tau}_1$

$$\Delta(\textit{N}_{\textit{signal}})/\textit{N}_{\textit{signal}} = 3.1\%
ightarrow \Delta(\textit{M}_{ ilde{ au}_1}) = 3.2 {
m GeV}/\textit{c}^2$$

Results from cross-section for $\tilde{\tau}_2$

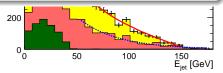
$$\Delta(N_{signal})/N_{signal} = 4.2\%
ightarrow \Delta(M_{\widetilde{ au}_2}) = 3.6 ext{GeV}/c^2$$

End-point + Cross-section $ightarrow \Delta(M_{\widetilde{\chi}_1^0}) = 1.7 ext{GeV}/c^2$

 Fit line to (data-background fit).
 Mikeel Berggren (DESY)
 SUSY pro

4 D b 4 A b

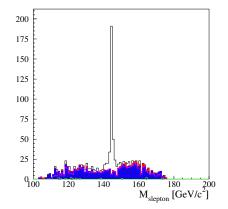
Results for old analysis of SPS1a' (See Phys.Rev.D82:055016,2010).


- Only the upper end-point is relevant.
- Background subtraction:
- Also: τ polarisation in $\tilde{\tau}_1$ decays

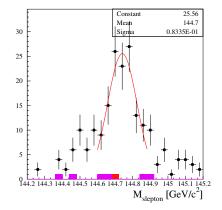
 $\Delta(\mathcal{P}_{\tau})/\mathcal{P}_{\tau} = 9$ %.

erii apuiaie.

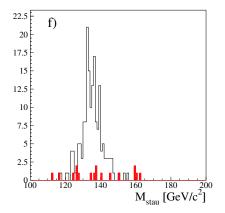
- [~]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).
 Mikeel Berggren (DESY)



- Nice channel: $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \rightarrow \tilde{\mu}_R \mu \text{ or } \rightarrow \tilde{e}_R e$)
- BR= few %.
- Can be fully kinematically constrained at ILC ⇒
- even lower uncertainties on $M_{\tilde{\mu}_{\rm R}}$ and $M_{\tilde{\rm e}_{\rm R}}$: ~ 25 MeV.
- Also decays to τ̃₁τ can be constrained as good as, or better than a threshold scan.


▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

- Nice channel: $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \rightarrow \tilde{\mu}_R \mu \text{ or } \rightarrow \tilde{e}_R e$)
- BR= few %.
- Can be fully kinematically constrained at ILC ⇒
- even lower uncertainties on $M_{\tilde{\mu}_{\rm R}}$ and $M_{\tilde{\rm e}_{\rm R}}$: ~ 25 MeV.
- Also decays to τ
 ₁τ can be constrained as good as, or better than a threshold scan.


< 🗇 🕨

- Nice channel: $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \rightarrow \tilde{\mu}_R \mu \text{ or } \rightarrow \tilde{e}_R e$)
- BR= few %.
- Can be fully kinematically constrained at ILC ⇒
- even lower uncertainties on $M_{\tilde{\mu}_{\rm R}}$ and $M_{\tilde{\rm e}_{\rm R}}$: ~ 25 MeV.
- Also decays to τ̃₁τ can be constrained as good as, or better than a threshold scan.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

- Nice channel: $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \rightarrow \tilde{\mu}_R \mu \text{ or } \rightarrow \tilde{e}_R e$)
- BR= few %.
- Can be fully kinematically constrained at ILC ⇒
- even lower uncertainties on $M_{\tilde{\mu}_{\rm R}}$ and $M_{\tilde{\rm e}_{\rm R}}$: ~ 25 MeV.
- Also decays to τ̃₁τ can be constrained as good as, or better than a threshold scan.

< 6 k

STC4 sleptons @ 500 GeV: $\tilde{\tau}_1$ and DM

In $\tilde{\tau}$ -coannihilation scenarios,

- Precise determination of the [˜]τ sector ⇒
- Predict relic density with sufficient precision ⇒
- Test whether the $\tilde{\chi}_1^0$ is indeed the dominant DM.
- Studied by Fittino (similar model, with ^χ⁰₁ and ^τ₁ identical to STC4).
- Fit with 18 free parameters, and predict Ω_{CDM} h²

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

STC4 sleptons @ 500 GeV: $\tilde{\tau}_1$ and DM

In $\tilde{\tau}$ -coannihilation scenarios,

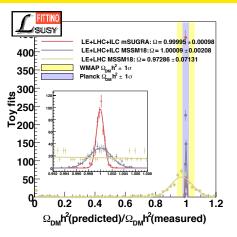
- Precise determination of the $\tilde{\tau}$ sector \Rightarrow
- Predict relic density with sufficient precision ⇒
- Test whether the $\tilde{\chi}_1^0$ is indeed the dominant DM.
- Studied by Fittino (similar model, with *χ˜*⁰₁ and *τ˜*₁ identical to STC4).
- Fit with 18 free parameters, and predict $\Omega_{CDM}h^2$

STC4 sleptons @ 500 GeV: $\tilde{\tau}_1$ and DM

In $\tilde{\tau}$ -coannihilation scenarios,

- Precise determination of the $\tilde{\tau}$ sector \Rightarrow
- Predict relic density with sufficient precision ⇒
- Test whether the $\tilde{\chi}_1^0$ is indeed the dominant DM.
- Studied by Fittino (similar model, with *χ˜*⁰₁ and *τ˜*₁ identical to STC4).
- Fit with 18 free parameters, and predict $\Omega_{CDM}h^2$

STC4 sleptons @ 500 GeV: $\tilde{\tau}_1$ and DM


In $\tilde{\tau}$ -coannihilation scenarios,

- Precise determination of the $\tilde{\tau}$ sector \Rightarrow
- Predict relic density with sufficient precision ⇒
- Test whether the
 [˜]₁ is indeed the dominant DM.
- Studied by Fittino (similar model, with [˜]χ⁰₁ and [˜]τ₁ identical to STC4).
- Fit with 18 free parameters, and predict Ω_{CDM} h²

STC4 sleptons @ 500 GeV: $\tilde{\tau}_1$ and DM

In $\tilde{\tau}$ -coannihilation scenarios,

- Precise determination of the $\tilde{\tau}$ sector \Rightarrow
- Predict relic density with sufficient precision ⇒
- Test whether the $\tilde{\chi}_1^0$ is indeed the dominant DM.
- Studied by Fittino (similar model, with [˜]χ⁰₁ and [˜]τ₁ identical to STC4).
- Fit with 18 free parameters, and predict $\Omega_{CDM}h^2$

If STCx is realised,

• We could have extremely precise information on DM:

- Is it SUSY ?
- Is it only SUSY?
- In any case: would open up, not only precission SUSY at ILC ("ILC is the LEP of SUSY"), but also new branch of cosmology...

To get extremely precise information:

- Specific reconstruction methods for e, μ, τ and bosinos (comming).
- Make a coherent study of all channels, at all *E_{CMS}* stages.
 - Also channels not studied in SPS1al
 - Exploit more complex decay cascades.
- Revisit the many-parameter fit w/ fittino.

イロト 不得 トイヨト イヨト 正言 ろくの

If STCx is realised,

• We could have extremely precise information on DM:

- Is it SUSY ?
- Is it only SUSY?
- In any case: would open up, not only precission SUSY at ILC ("ILC is the LEP of SUSY"), but also new branch of cosmology...

To get extremely precise information:

- Specific reconstruction methods for e, μ, τ and bosinos (comming).
- Make a coherent study of all channels, at all *E_{CMS}* stages.
 - Also channels not studied in SPS1al
 - Exploit more complex decay cascades.
- Revisit the many-parameter fit w/ fittino.

イロト 不得 トイヨト イヨト 正言 ろくの

If STCx is realised,

- We could have extremely precise information on DM:
 - Is it SUSY ?
 - Is it only SUSY?
- In any case: would open up, not only precission SUSY at ILC ("ILC is the LEP of SUSY"), but also new branch of cosmology...

To get extremely precise information:

- Specific reconstruction methods for e, μ, τ and bosinos (comming).
- Make a coherent study of all channels, at all *E_{CMS}* stages.
 - Also channels not studied in SPS1al
 - Exploit more complex decay cascades.
- Revisit the many-parameter fit w/ fittino.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

If STCx is realised,

- We could have extremely precise information on DM:
 - Is it SUSY ?
 - Is it only SUSY?
- In any case: would open up, not only precission SUSY at ILC ("ILC is the LEP of SUSY"), but also new branch of cosmology...

To get extremely precise information:

- Specific reconstruction methods for e, μ, τ and bosinos (comming).
- Make a coherent study of all channels, at all E_{CMS} stages.
 - Also channels not studied in SPS1a1
 - Exploit more complex decay cascades.
- Revisit the many-parameter fit w/ fittino.

(日) (周) (王) (王) (王) (王)

If STCx is realised,

- We could have extremely precise information on DM:
 - Is it SUSY ?
 - Is it only SUSY?
- In any case: would open up, not only precission SUSY at ILC ("ILC is the LEP of SUSY"), but also new branch of cosmology...

To get extremely precise information:

- Specific reconstruction methods for e, μ , τ and bosinos (comming).
- Make a coherent study of all channels, at all E_{CMS} stages.
 - Also channels not studied in SPS1a
 - Exploit more complex decay cascades.
- Revisit the many-parameter fit w/ fittino.

イロト 不得 トイヨト イヨト 正言 ろくの

If STCx is realised,

- We could have extremely precise information on DM:
 - Is it SUSY ?
 - Is it only SUSY?
- In any case: would open up, not only precission SUSY at ILC ("ILC is the LEP of SUSY"), but also new branch of cosmology...

To get extremely precise information:

- Specific reconstruction methods for e, μ , τ and bosinos (comming).
- Make a coherent study of all channels, at all E_{CMS} stages.
 - Also channels not studied in SPS1a'
 - Exploit more complex decay cascades.
- Revisit the many-parameter fit w/ fittino.

イロト 不得 トイヨト イヨト 正言 ろくの

If STCx is realised,

- We could have extremely precise information on DM:
 - Is it SUSY ?
 - Is it only SUSY?
- In any case: would open up, not only precission SUSY at ILC ("ILC is the LEP of SUSY"), but also new branch of cosmology...

To get extremely precise information:

- Specific reconstruction methods for e, μ , τ and bosinos (comming).
- Make a coherent study of all channels, at all E_{CMS} stages.
 - Also channels not studied in SPS1a'
 - Exploit more complex decay cascades.
- Revisit the many-parameter fit w/ fittino.

If STCx is realised,

- We could have extremely precise information on DM:
 - Is it SUSY ?
 - Is it only SUSY?
- In any case: would open up, not only precission SUSY at ILC ("ILC is the LEP of SUSY"), but also new branch of cosmology...

To get extremely precise information:

- Specific reconstruction methods for e, μ , τ and bosinos (comming).
- Make a coherent study of all channels, at all E_{CMS} stages.
 - Also channels not studied in SPS1a'
 - Exploit more complex decay cascades.
- Revisit the many-parameter fit w/ fittino.

Thank You !

BACKUP SLIDES

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.
- Also note that there are not enough measurements to make a constrained fit, even assuming that the two SUSY particles in the two decays are the same: (2 × 4 unknown components of 4-momentum (=8)) (total E and p conservation (=4) + 2

Observables: Pair-production, two-body decay

However:

- If the masses are known from other measurements, there are enough constraints.
- Then the events can be completely reconstructed ...
- ... and the angular distributions both in production and decay can be measured.
- From this the spins can be determined, which is essential to determine that what we are seeing is SUSY.

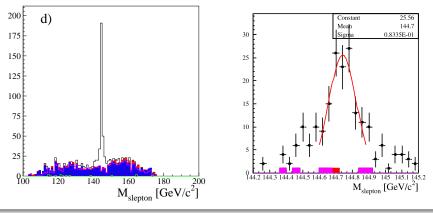
Furthermore:

- Looking at more complicated decays, such as cascade decays, there are enough constraints if some (but not all) masses are known.
- Allows to reconstruct eg. the slepton mass in [˜]_{χ2} → ℓℓ → ℓℓ[˜]_{χ1} if chargino and LSP masses are known.

Observables: Pair-production, two-body decay

However:

- If the masses are known from other measurements, there are enough constraints.
- Then the events can be completely reconstructed ...
- ... and the angular distributions both in production and decay can be measured.
- From this the spins can be determined, which is essential to determine that what we are seeing is SUSY.


Furthermore:

- Looking at more complicated decays, such as cascade decays, there are enough constraints if some (but not all) masses are known.
- Allows to reconstruct eg. the slepton mass in $\tilde{\chi}_2^0 \rightarrow \tilde{\ell}\ell \rightarrow \ell\ell\tilde{\chi}_1^0$ if chargino and LSP masses are known.
- Order-of-magnitude better mass resolution.

Observables: Pair-production, two-body decay

However:

• If the masses are known from other measurements, there are

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τχ̃₁⁰ → Xν_τχ̃₁⁰.

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τ χ̃₁⁰ → Xν_τ χ̃₁⁰.

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τ χ̃₁⁰ → Xν_τ χ̃₁⁰.

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τχ̃₁⁰ → Xν_τχ̃₁⁰.

Extracting the $\tilde{\tau}$ properties

See Phys.Rev.D82:055016,2010

Use polarisation (0.8,-0.22) to reduce bosino background.

From decay kinematics:

- $M_{\tilde{\tau}}$ from $M_{\tilde{\chi}_{\tau}^{0}}$ and end-point of spectrum = $E_{\tau,max}$.
- Other end-point hidden in γγ background:Must get M_{χ̃1} from other sources. (μ̃, ẽ, ...)

From cross-section:

•
$$\sigma_{\tilde{\tau}} = A(\theta_{\tilde{\tau}}, \mathcal{P}_{beam}) \times \beta^3/s$$
, so
• $M_{\tilde{\tau}} = E_{beam} \sqrt{1 - (\sigma s/A)^{2/3}}$: no $M_{\tilde{\chi}_1^0}$!

From decay spectra:

• \mathcal{P}_{τ} from exclusive decay-mode(s): handle on mixing angles $\theta_{\tilde{\tau}}$ and $\theta_{\tilde{\chi}_{1}^{0}}$

Backup a

$ilde{ au}$ channels

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

 $\tilde{\ell}$ properties:

- Only two particles (possibly *τ*:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts.

Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = \pm 1,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* significantly less than E_{CMS}.
- *M_{miss}* significantly less than *M_{CMS}*.
- No particle with momentum close to E_{beam}.
 - ●●● 単則 本語を 本語を 本語を

$\tilde{\tau}$ channels

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

 $\tilde{\ell}$ properties:

- Only two particles (possibly *τ*:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

+ anti $\gamma\gamma$ cuts.

Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* significantly less than E_{CMS}.
- *M_{miss}* significantly less than *M_{CMS}*.
- No particle with momentum close to E_{beam}.

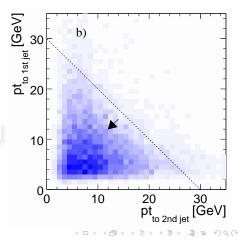
$\tilde{\tau}$ channels

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

 $\tilde{\ell}$ properties:

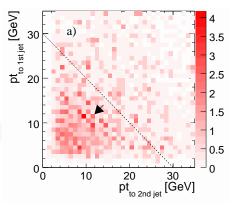
- Only two particles (possibly *τ*:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts.


Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* significantly less than E_{CMS}.
- *M_{miss}* significantly less than *M_{CMS}*.
- No particle with momentum close to E_{beam}.

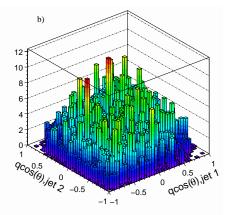
• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(*q_{iet1}* cos θ_{iet1}, *q_{iet2}* cos θ_{iet2}



• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

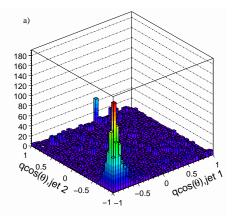
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2}



• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

τ₂:

- Other side jet not ${\it e}$ or μ
- Most energetic jet not ${\it e}$ or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

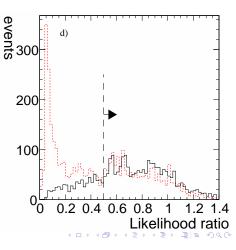


• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

τ₂:

- Other side jet not ${\it e}$ or μ
- Most energetic jet not ${\it e}$ or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

 $\tilde{\tau}$ channels

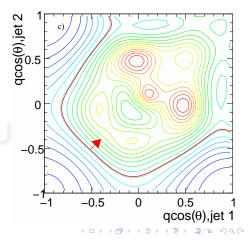

$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

τ₂:

- Other side jet not ${\it e}$ or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

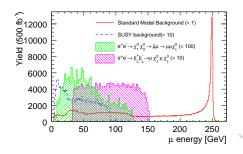
 $\tilde{\tau}$ channels


$\tilde{\tau}_1$ and $\tilde{\tau}_2$ further selections

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

τ₂:

- Other side jet not e or μ
- Most energetic jet not ${\it e}$ or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

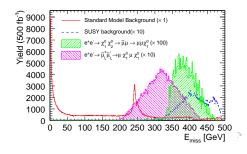

- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.
- τ₂:
 - $\bullet~$ Other side jet not $e~{\rm or}~\mu$
 - Most energetic jet not ${\it e}$ or μ
 - Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{L}\tilde{\mu}_{L} \rightarrow \mu\mu\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ • $\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0} \rightarrow \mu\tilde{\mu}_{R}\tilde{\chi}_{1}^{0} \rightarrow \mu\mu\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$
- Momentum of *µ*:s
- E_{miss}

• $M_{\mu\mu}$

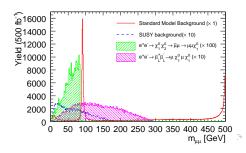

Channels with μ :s

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{L}\tilde{\mu}_{L} \rightarrow \mu\mu\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ • $\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0} \rightarrow \mu\tilde{\mu}_{R}\tilde{\chi}_{1}^{0} \rightarrow \mu\mu\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$
- Momentum of *µ*:s
- E_{miss}

• $M_{\mu\mu}$

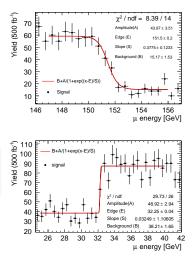


Channels with μ :s

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L} \rightarrow \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0$ • $\tilde{\nu}^0\tilde{\chi}_1^0 \rightarrow \mu\tilde{\mu}_{\rm D}\tilde{\chi}_1^0 \rightarrow \mu\mu\tilde{\chi}_1^0$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mu \tilde{\mu}_R \tilde{\chi}_1^0 \to \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- Momentum of *µ*:s
- E_{miss}
- $M_{\mu\mu}$



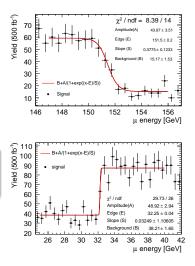
$\tilde{\mu}_{\mathrm{L}}\tilde{\mu}_{\mathrm{L}}$

Selections

- $\theta_{missingp} \in [0.1\pi; 0.9\pi]$
- $E_{miss} \in [200, 430] \text{GeV}$
- $M_{\mu\mu} \notin [80.100] \text{GeV}$ and > 30 GeV/c^2
- Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{ ilde{\chi}_1^0}) = 920 \mathrm{MeV}/c^2$$

 $\Delta(M_{ ilde{\mu}_\mathrm{L}}) = 100 \mathrm{MeV}/c^2$

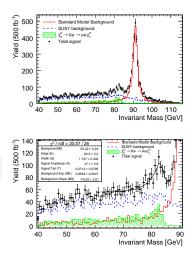


$\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$

Selections

- $\theta_{missingp} \in [0.1\pi; 0.9\pi]$
- $E_{miss} \in [200, 430]$ GeV
- $M_{\mu\mu} \notin [80.100] \text{GeV}$ and > 30 GeV/c^2
- Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{ ilde{\chi}_1^0}) = 920 {
m MeV}/c^2 \ \Delta(M_{ ilde{\mu}_{
m L}}) = 100 {
m MeV}/c^2$$

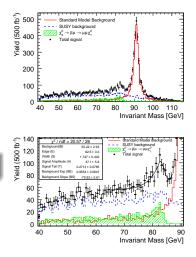


Selections

- $\theta_{missingp} \in [0.2\pi; 0.8\pi]$
- $p_{Tmiss} > 40 {
 m GeV}/c$
- β of μ system > 0.6.
- $E_{miss} \in [355, 395]$ GeV

Masses from edges. Beam-energy spread dominates error.

 $\Delta(M_{\tilde{\chi}^0_2}) = 1.38 {
m GeV}/c^2$



Selections

- $\theta_{missingp} \in [0.2\pi; 0.8\pi]$
- $p_{Tmiss} > 40 {
 m GeV}/c$
- β of μ system > 0.6.
- $E_{miss} \in [355, 395] \text{GeV}$
- Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{{\widetilde \chi}^0_2})=1.38 {
m GeV}/c^2$$

$\tilde{\mu}_{\rm R}$ threshold scan

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

$\tilde{\mu}_{\rm R}$ threshold scan

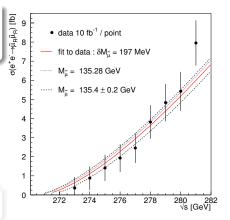
From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

- So: Next step is $M_{\tilde{\mu}_{\rm R}}$ from threshold:
 - 10 points, 10 fb $^{-1}$ /point.

• Luminousity $\propto E_{CMS}$, so this is $\Leftrightarrow 170 \text{ fb}^{-1} @ E_{CMS} = 500 \text{ GeV}.$

Error on $M_{\tilde{\mu}_{\mathrm{R}}}$ = 197 MeV

Channels with μ :s


$\tilde{\mu}_{\mathrm{R}}$ threshold scan

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

So: Next step is $M_{\tilde{\mu}_R}$ from threshold:

- 10 points, 10 fb $^{-1}$ /point.
- Luminousity $\propto E_{CMS}$, so this is $\Leftrightarrow 170 \text{ fb}^{-1} @ E_{CMS} = 500 \text{ GeV}.$

Error on $M_{\widetilde{\mu}_{
m R}}$ = 197 MeV

Channels with μ :s

$\tilde{\mu}_{\mathrm{R}}$ threshold scan

From these spectra, we can 5(e⁺e'→μ̃_Rμ̃_R) [fb] 2 8 6 estimate $M_{\tilde{e}_{P}}$, $M_{\tilde{\mu}_{P}}$ and $M_{\tilde{\chi}_{1}^{0}}$ to < data 10 fb⁻¹ / point 1 GeV. fit to data : $\delta M_{\tilde{u}} = 197 \text{ MeV}$ M. = 135.28 GeV So: Next step is $M_{\tilde{\mu}_{\rm R}}$ from 6 $M_{\widetilde{\mu}}=~135.4\pm0.2~GeV$ threshold: 5 • 10 points, 10 fb $^{-1}$ /point. 4 з • Luminousity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ *E*_{CMS}=500 GeV. 2 0 280 28 √s [GeV] Error on $M_{\tilde{\mu}_{\rm R}}$ = 197 MeV 272 274 276 278 282