

Overview of FCAL Activities

Oleksandr Borysov Tel Aviv University

On behalf of the FCAL collaboration

LCWS14, Belgrade October 9, 2014

Overview

- Instrumentation of the forward regions in linear collider experiments
- LumiCal calorimeter:
 - Luminosity measurement;
 - Detector module development;
 - Infrastructure for LumiCal prototype beam test.
- BeamCal calorimeter:
 - Beam parameters and single electron reconstruction.
- Summary and plans

Instrumentation of the forward region

Goals:

- Instant luminosity measurement;
- Provide information for beam tuning;
- Precise integrated luminosity measurement;
- Extend a calorimetric coverage to small polar angles. Important for physics analysis.

LumiCal: two tungsten-silicon calorimeters placed symmetrically on both sides of the interaction point at a distance of ~ 2.5 m.

Each calorimeter consists of 30 layers of 3.5 mm thick tungsten plates 1 mm apart interleaved with silicon sensors.

BeamCal: similar construction, with tungsten absorber but radiation hard sensors (GaAs, CVD diamond).

Luminosity measurement with LumiCal

The luminosity can be measured by counting number N_B of Bhabha events in a certain polar angle (θ) range of the scattered electron.

$$L = \frac{N_B}{\sigma_B}$$

 $\sigma_{_B}$ – integral of the differential cross section over the same θ range.

The cross section of the Bhabha process can be precisely calculated. In leading order:

$$\frac{d\sigma_{\!\scriptscriptstyle B}}{d\theta} = \frac{2\pi\alpha_{\!\scriptscriptstyle em}^2}{s} \frac{\sin\theta}{\sin^4(\theta/2)} \approx \frac{32\pi\alpha_{\!\scriptscriptstyle em}^2}{s} \frac{1}{\theta^3} \,, \quad \text{the approximation holds at small } \theta.$$

 α is the fine-structure constant, s - center-of-mass energy squared.

LumiCal geometry

Uncertainty in luminosity measurement depends on the polar angle bias $\Delta\theta$ and minimum polar angle θ_{min} as:

$$\left(\frac{\Delta L}{L}\right)_{rec} \approx 2 \frac{\Delta \theta}{\theta_{min}}$$

 $\left(\frac{\Delta L}{L}\right)_{rec} \approx 2 \frac{\Delta \theta}{\theta_{min}}$ $\Delta \theta$ depends on polar angular pad size I_{θ} .

For $I_0 = 0.8 \text{ mrad}$, $\Delta L/L = 1.6 \cdot 10^{-4}$.

Energy resolution:

$$\frac{\sigma_{\rm E}}{\rm E} = \frac{a_{\rm res}}{\sqrt{\rm E_{\rm beam} (GeV)}}$$

LumiCal fiducial volume: $41 < \theta < 67$ mrad

$$a_{res} = (0.21 \mp 0.02) \sqrt{GeV}$$
.

Systematic effects

- Pinch-effect and beamstrahlung;
- Background from four-fermion production;
- Resolution and scale of the electron energy measurement;
- Beam polarization

Estimated systematic uncertainty at $\sqrt{s} = 500$ GeV.

Lumi spectrum with event by event correction

Source	Value	Uncertainty	Luminosity Uncertainty
σ_{θ}	2.2×10^{-2}	100%	1.6×10^{-4}
Δ_{θ}	3.2×10^{-3}	100%	1.6×10^{-4}
$a_{\rm res}$	0.21	15%	10^{-4}
luminosity spectrum			10^{-3}
bunch sizes σ_x , σ_z ,	655 nm, 300 μm	5%	1.5×10^{-3}
two photon events	2.3×10^{-3}	40%	0.9×10^{-3}
energy scale	400 MeV	100%	10^{-3}
polarisation, e ⁻ , e ⁺	0.8, 0.6	0.0025	1.9×10^{-4}
total uncertainty			2.3×10^{-3}

LumiCal sensor

- Silicon sensor
- thickness 320 μm
- DC coupling with read-out electronics
- p⁺ implants in n material
- radial pad pitch 1.8 mm
- Azimuthal pitch 7.5°

Capacitance over Pad Area

New Front-end in CMOS 130 nm

Existing readout based on 0.35µm ASIC:

- 8 channel front-end (preamp, shaper $T_{peak} \sim 60$ ns, ~ 9 mW/channel);
- 8 channel pipeline ADC, Tsmp \leq 25 MS/s, \sim 1.2 mW/MHz;
- FPGA based data concentrator and further readout.

Front-end peak power consumption dropped to ~1.5 mW/channel

SAR ADC architecture, peak power ~1 mW @ 40 MHz (for 0.35 μm, would be > 40 mW)

For the next readout generation a very low power, radiation resistant, ASICs are being developed in CMOS 130 nm.

See the talk by Angel Abusleme in Detector: Calorimetry session.

Tracking Detector in Front of LumiCal

- Improve polar angle measurement accuracy important for precise luminosity evaluation;
- Provide information for better LumiCal sensors alignment;
- Provide more information to enable e/γ identification, important for various physics study.

Study in simulation with Geant4
LumiCal simulation application
(LuCaS)

2 layers of tracking

LumiCal

Mechanical Structure for Calorimeter Prototypes

Mechanical structure for tungsten-based calorimeter tests has been designed and manufactured:

- capable of holding up to 30 tungsten plates and detector modules;
- Equipped with electronic cards and service lines supporting systems;
- Covered by light-tight shielding box.

Frame Geometry Validation

- 9 points were probed with a 3D coordinate measuring machine;
- Distance from point-to-point of different plates was measured.

- 9 configurations have been tested with 2 tungsten plates;
- 4 configurations have been tested with 5 tungsten plates;
- Vertical and horizontal orientations were tested;
- More then 50 measurements were done which correspond to more then 900 probes.
- The accuracy of geometrical parameters was found to be better then 50 µm.

FCAL test beam infrastructure

Beam Test of LumiCal Prototype

- Four LumiCal modules have been assembled.
- They were tested in AGH-UST (Krakow) to work together;
- Read out boards were modified to reduce the noise.

- Tests of the prototype with four detector modules working together;
- Study electromagnetic shower development in a precise and well known structure and compare it with MC;
- Test and improve reconstruction algorithm and particle tagging;
- Measure energy resolution and polar angle reconstruction precision.

BeamCal performance simulation

- The information about the collisions on a bunch-bybunch basis is important to achieve the best possible conditions during the collisions.
- Beams interaction results in beamstrahlung photons radiation;
- Fraction of beamstrahlung photons convert into incoherent e+e- pairs;
- Energy depositions from these pairs in BeamCal can be used for fast beam parameter reconstruction and instant luminosity measurement.

Single high energy electron reconstruction in BeamCal

- Ongoing work on reconstruction algorithm and detector segmentation optimization.
- Background generated with Guinea-Pig
- Energy deposition simulated with BeCaS Geant4 application.

Proportional Segment.

Uniform Segment.

With different segmentation cell size.

EM and Hadronic Showers Identification

Longitudinal shape of EM shower is well approximated with Gamma distribution with two parameters: *a* and *b*.

Correlation
coefficient
between EM
shower (h) pattern
and measured
shower (f)

$$\rho_{max}(h, f) = \frac{\sum\limits_{i=1}^{N_h} h_i f_i(x^*_{start})}{\sqrt{\sum\limits_{i=1}^{N_h} h_i^2} \sqrt{\sum\limits_{i=1}^{N_h} f_i^2}}$$

BeamCal radiation load

- Radiation dose was estimated using BeCaS.
- The highest dose is in the layer 6; for small radius it is about 1 MGy per year for one single pad.

Different sensors were studied:

- GaAs sensor;
- Polycrystalline CVD diamond;
- Single crystal sapphire:
 - the prototype for MIP detection was studied at 5 GeV electron beam at DESY in January 2014.

Dose per year as a function of BeamCal radius of the 6th layer. Blue/red - different set of beam parameters.

Summary

- In the present conceptual design LumiCal and BeamCal detectors can provide luminosity measurements with precision required for physics analysis in linear collider experiments. But if the beam conditions change (e.g. L*) redesign will be required.
- Improvements can still be made in the integration of LumiCal in ECAL.
- Investigation of the performance of LumiCal in combination with tracking detector is in progress.
- There are 4 assembled LumiCal modules, plenty of tungstan absorber plates and mechanical frame ready for calorimeter prototype beam test.
- The paper summarizing the results from 2010 to 2012 beam tests of fully assembled modules is in final preparation. The performance of the modules matches the requirements.
- Development of the next generation of readout chips and detector modules for LumiCal and BeamCal are in progress.