Development of a High Resolution Cavity BPM for the CLIC Main Beam

J.R. Towler, S. Boogert, F.J. Cullinan, T. Lefevre, A. Lyapin, L. Soby, M.Wendt

Contents

- Specifications and cavity BPM description
- First generation prototype
 - BPM and System Description
 - Beam tests at CTF3
 - Calibrations
 - Sensitivity
- Second generation prototype
 - Design
 - RF measurements
 - Future plans
 - Resolution Measurement

CLIC/CTF3 Cavity BPM Specs.

- 50 nm and 50 ns time and spatial resolution.
 - Multiple measurements in 156 ns train
 - Dynamic range of ±100μm
 - >4000 BPMs
- Cavity BPM good candidate
 - High position resolution
- 14 GHz for CLIC
 - Design is scalable
- 15 GHz resonant frequency for CTF prototype.
 - 10th harmonic of 1.5 GHz spacing frequency
- Low Q factor
 - Time resolution

Cavity Beam Position Monitors

- Centered beam excites monopole mode (TM_{010}).
 - Amplitude dependent on charge
- Away from the center, other modes are excited. The first order dipole (TM₁₁₀) depends linearly on beam offset and charge.
- Two orthogonal modes.
- Higher order modes.
- Supression of unwanted modes.

BPM Signal

- The signals from the cavity are in the form of a decaying sine wave.
- Multibunch signal converges to periodic.
- Position signal is linear with offset and charge.
- Monopole similar.
- Beam divergence and tilt also have contributions to signal which are 'in quadrature'.

$$V_{out} = \frac{\omega}{2} \sqrt{\frac{Z}{Q_{ext}} \left[\frac{R}{Q}\right]_0} q \frac{x}{x_0}$$

$$V_{x}(t) = V_{out}e^{-t/2\tau}\sin(\omega t)$$

$$V_{\alpha}(t) \propto -\alpha e^{-t/2\tau} \cos(\omega t)$$

$$V_{\theta}(t) \propto \theta e^{-t/2\tau} \cos(\omega t)$$

Stainless Steel Prototype

- Two cavities:
 - Position cavity: pillbox
 - Reference cavity reentrant
- Stainless steel to lower Q factor: ~ 250
 - For low temporal resolution
 - Lower Q in reference cavity
- Waveguide/coax Couplers need tuners
 - Very sensitive to antenna/wall separation

Reentrant reference cavity

Dipole cavity with waveguides

First Prototype Test System

- 15 GHz signal downconverted to 200 MHz.
- 14.8 GHz local oscillator
- Diode detector, timing
- OTR screen, centring, position information
- Translation stages, centring, calibration and sensitivity measurement

Electronics

Downconvert the 15GHz signals to 200MHz.

- Gives 5dB gain at 15GHz.
- 2Gs/s, 10-bit digitiser.
- Diode rectifiers.
 - Timing and charge

Beam Tests of St. Steel Prototype

- Calibrations using translation stages
 - Originally used corrector magnets
- Charge sensitivity measurement
 - Reference Cavity
- Position sensitivity measurement
 - Position cavity with reference sensitivity
- Effects of pulse length

Calibration of St. Steel Prototype

$$I = \frac{A_{pos}}{A_{ref}} \cos(\varphi_{pos} - \varphi_{ref})$$

$$Q = \frac{A_{pos}}{A_{ref}} \sin(\varphi_{pos} - \varphi_{ref})$$

$$x = S(I\cos\theta_{IQ} + Q\sin\theta_{IQ})$$
$$x' = S'(-I\sin\theta_{IQ} + Q\cos\theta_{IQ})$$

- Calibration performed by scanning position
 - Digital down conversion, amplitude and phase
 - I and Q recorded, rotation angle measured
- Position measured from using scale factor

Sensitivity Measurements

- Charge sensitivity measurements
 - Laser attenuation,
 Current monitor
- Position sensitivity
 - Translation stages

Sensitivity Measurement	Measurement	Estimated
X Position (V/nC/mm)	16.6 ± 0.2	17.1
Y Position (V/nC/mm)	15.9 ± 0.4	17.1
Charge (single bunch)	128.8 ± 2	117
Charge(multi bunch)	608 ± 2	-

$$\frac{A}{A_0} = \frac{1 - e^{-\frac{Nt_b}{\tau}}}{1 - e^{-\frac{t_b}{\tau}}}$$

Prototype Cavity Redesign

- Issues with first prototype system:
 - High temporal resolution
 - Lower spatial resolution
 - Waveguide-coax coupling very sensitive to separation
 - Tuners needed to optimise coupling
 - Low resolution digitiser
 - Electronics

Copper Cavity Redesign

- A copper BPM results in higher Q factor: ~500
 - Double stainless steel cavity Q
 - Results in "50 ns temporal resolution"
 - Will also provide improved spatial resolution
 - Need to optimise internal and external Q
- Design of position cavity does not change
 - Reference cavity design altered to accommodate new feedthroughs

Waveguide-Coaxial Coupling

 First generation very sensitive to antenna wall separation

10 μm change results in 30dB₀ change, tuning necessary

- Several designs were investigated
 - Magnetic coupling, impedance transformers, etc.
- Antenna with bead was decided upon as the best candidate
 - Coupling sensitivity "improved by factor of 2"
- Threaded antenna to easily change

RF Measurement of New BPM

- Prototype manufactured for RF testing
 - Bad dimensions, particularly the reference cavity
- Measurements compared with simulations
 - Before and after brazing
 - Frequencies and Q factors
 - External Q's very high
 - Good cross coupling

Cavity	Q_L	F ₀ /GHz
Reference	938	14.772
Predicted	500	15.0
Position	~840	14.996
Predicted	524	15.0

System Upgrade

- 3 BPMs manufactured externally
- Upgraded downconverter electronics
 - 3 BPMs, 3 channels each, lower IF (70 MHz?)

- New digitiser: better resolution, lower sampling
- Diode detectors for 3 channels, 1 or 3 BPMs
- New support
 - Movers for 3 BPMs, OTR screen

Future Plans

- Install 3 BPM system in CTF3
 - January, RF measurements made beforehand
- Spatial resolution determined by SVD analysis
- Ultimate goal: Combined spatial and temporal resolution measurement
 - May prove difficult for CALIFES
- Wakefield study will also take place