
Energy for Innovation and Innovation in Energy

LCWS, Belgrade, Oct. 2014

Some of the high energy frontier future infrastructures

LCWS, Belgrade, Oct. 2014

Content

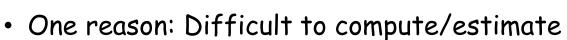
- Energy consumption: a burning hot parameter
- HEP future: Sustainability: efficiency and renewable energies
- Energy is HEP at core

Colliders hot parameters

- Detailed studies on:
 - Beam Energy
 - Luminosity:
 - Emittance
 - spot size
 - Bunches (nb, charge,...)
 - Chromaticity
 - Energy spread
 - Beam purity at IP
 - Stability
 - Reliability and availability
 - ...

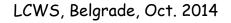
But P_{AC}: AC wall-plug power figures are often: missing, partial or poorly documented

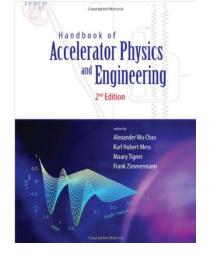
parameter	LHC (pp)	FCC-hh	LEP2 FCC-ee (TLEP)						CepC
	design		achieved	Z	Z (cr. w.)	W	Н	$t\bar{t}$	
species	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^+e^-
E_{beam} [GeV]	7,000	50,000	104	45.5	45	80	120	175	120
circumf. [km]	26.7	100	26.7	100	100	100	100	100	54
current [mA]	584	500	3.0	1450	1431	152	30	6.6	16.6
no. of bunches, n_b	2808	10600	4	16700	29791	4490	1360	98	50
$N_b [10^{11}]$	1.15	1.0	4.2	1.8	1.0	0.7	0.46	1.4	3.7
ϵ_x [nm]	0.5	0.04	22	29	0.14	3.3	0.94	2	6.8
ϵ_y [pm]	500	41	250	60	1	7	2	2	20
β_x^* [m]	0.55	1.1	1.2	0.5	0.5	0.5	0.5	1.0	0.8
β_y^* [mm]	550	1100	50	1	1	1	1	1	1.2
σ_x^* [µm]	16.7	6.8	162	121	8	26	22	45	74
σ_y^* [µm]	16.7	6.8	3.5	0.25	0.032	0.13	0.044	0.045	0.16
θ_c [mrad]	0.285	0.074	0	0	30	0	0	0	0
$f_{\rm rf}$ [MHz]	400	400	352	800	300	800	800	800	700
$V_{\rm rf}$ [GV]	0.016	>0.020	3.5	2.5	0.54	4	5.5	11	6.87
$\alpha_c \ [10^{-5}]$	32	11	14	18	2	2	0.5	0.5	4.15
$\delta_{\rm rms}^{\rm SR}$ [%]			0.16	0.04	0.04	0.07	0.10	0.14	0.13
$\sigma_{z,\mathrm{rms}}^{\mathrm{SR}}$ [mm]			11.5	1.64	1.9	1.01	0.81	1.16	2.3
$\delta_{\rm rms}^{\rm tot}$ [%]	0.003	0.004	0.16	0.06	0.12	0.09	0.14	0.19	0.16
$\sigma_{z,\mathrm{rms}}^{\mathrm{tot}}$ [mm]	75.5	80	11.5	2.56	6.4	1.49	1.17	1.49	2.7
F_{hq}	1.0	1.0	0.99	0.64	0.94	0.79	0.80	0.73	0.61
$\tau_{ }$ [turns]	10^{9}	10^{7}	31	1320	1338	243	72	23	40
ξ_x/IP	0.0033	0.005	0.04	0.031	0.032	0.060	0.093	0.092	0.103
ξ_y/IP	0.0033	0.005	0.06	0.030	0.175	0.059	0.093	0.092	0.074
no. of IPs, n_{IP}	3 (4)	2 (4)	4	4	4	4	4	4	2
$L/IP [10^{34}/cm^2/s]$	l	5	0.01	28	219	12	6	1.7	1.8
$\tau_{\rm beam}$ [min]	2760	1146	300	287	38	72	30	23	57
P _{SR} /beam [MW]	0.0036	2.4	11	50	50	50	50	50	50
energy / beam [MJ]	392	8400	0.03	22	22	4	1	0.4	0.3


Table 1: Parameters of the Proposed FCC-hh, FCC-ee/TLEP and CepC, Compared with LEP2 and the LHC Design

IPAC 2014, F. Zimmermann et al.

LCWS, Belgrade, Oct. 2014


P_{AC}: wall-plug power


- Future projects:
 - P_{AC} often forgotten
 - A technical detail on the back burner
- In celebrated books: no mention
- Past projects:
 - Difficult to get the estimated/measured figures.

- Component by component (RF, Cryo, electronics, air cond., water cooling,)
- General formulae and approximations

However P_{AC} is a key parameter to select a technology or a project.

Scaling laws for e+/e- linear colliders J.P. Delahaye, G. Guignard, T. Raubenheimer, I. Wilson

In the low beamstrahlung regime:

$$M = L \frac{U_{\rm f}}{\delta_{\rm B}^{1/2} P_{\rm AC}} \propto \frac{\eta_{\rm beam}^{\rm RF}}{\varepsilon_{\rm ny}^{*\,1/2}} \propto \frac{\omega^{1/30} G_{\rm a}^{-1/6}}{\varepsilon_{\rm ny0}^{1/3} (1 + \Delta \varepsilon_{\rm ny}/\varepsilon_{\rm ny0})^{1/2}},$$

392

J.P. Delahaye et al. /Nucl. Instr. and Meth. in Phys. Res. A 421 (1999) 369-405

$$L \propto \frac{\delta_{\rm B}^{1/2} \eta_{\rm RF}^{\rm AC}}{U_{\rm f}} \frac{\eta_{\rm beam}^{\rm RF}}{\varepsilon_{\rm my}^{* 1/2}} \frac{P_{\rm AC}}{P_{\rm AC}} \propto \frac{\delta_{\rm B}^{1/2} \eta_{\rm RF}^{\rm AC}}{U_{\rm f}} \frac{\omega^{1/30} G_{\rm a}^{-1/6}}{\varepsilon_{\rm ny0}^{1/30} (1 + \Delta \varepsilon_{\rm ny}/\varepsilon_{\rm ny0})^{1/2}} P_{\rm AC},$$

$$P_{\rm AC} \propto \frac{U_{\rm f}^3}{\delta_{\rm B}^{1/2} \eta_{\rm RF}^{\rm AC}} \frac{\varepsilon_{\rm ny0}^{1/3} (1 + \Delta \varepsilon_{\rm ny}/\varepsilon_{\rm ny0})^{1/2}}{\omega^{1/30} G_{\rm a}^{-1/6}}.$$

In the high beamstrahlung regime:

$$M = \frac{L}{\delta_{\rm B}^{3/2}} \frac{U_{\rm f}^{1/2}}{P_{\rm AC}} \propto \frac{\omega^{1/4} (a/\lambda)^{1/2}}{\varepsilon_{\rm ny}^{*\,1/2}} \propto \frac{\omega^{7/20}}{\varepsilon_{\rm ny_0}^{1/2} (1 + \Delta\varepsilon_{\rm ny}/\varepsilon_{\rm ny0})^{1/2}},$$

$$L \propto \frac{\delta_{\rm B}^{3/2}}{U_{\rm f}^{1/2}} \frac{\eta_{\rm RF}^{\rm AC}}{\beta_{\rm y}^{*\,1/2}} \frac{\eta_{\rm b}^{\rm RF}}{\sigma_z^{1/2} \varepsilon_{\rm ny}^{*\,1/2}} P_{\rm AC} \propto \frac{\delta_{\rm B}^{3/2}}{U_{\rm f}^{1/2}} \frac{\eta_{\rm RF}^{\rm AC}}{\beta_{\rm y}^{*\,1/2}} \frac{\omega^{7/20}}{\sigma_z^{1/2} \varepsilon_{\rm ny}^{*\,1/2}} P_{\rm AC},$$

$$P_{\rm AC} \propto \frac{U_{\rm f}^{5/2}}{\delta_{\rm B}^{3/2}} \frac{\beta_{\rm y}^{*\,1/2}}{\eta_{\rm RF}^{\rm AC}} \frac{\varepsilon_{\rm ny}^{1/2} (1 + \Delta\varepsilon_{\rm ny}/\varepsilon_{\rm ny0})^{1/2}}{\omega^{7/20}}.$$

U_f= E_{beam}

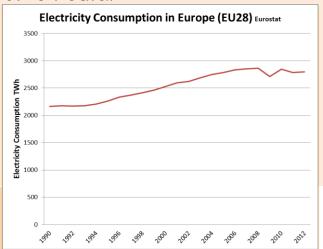
 $\delta_B = \%$ loss by beamstrahlung

 η^{AC}_{RF} =wall plug power to beam power

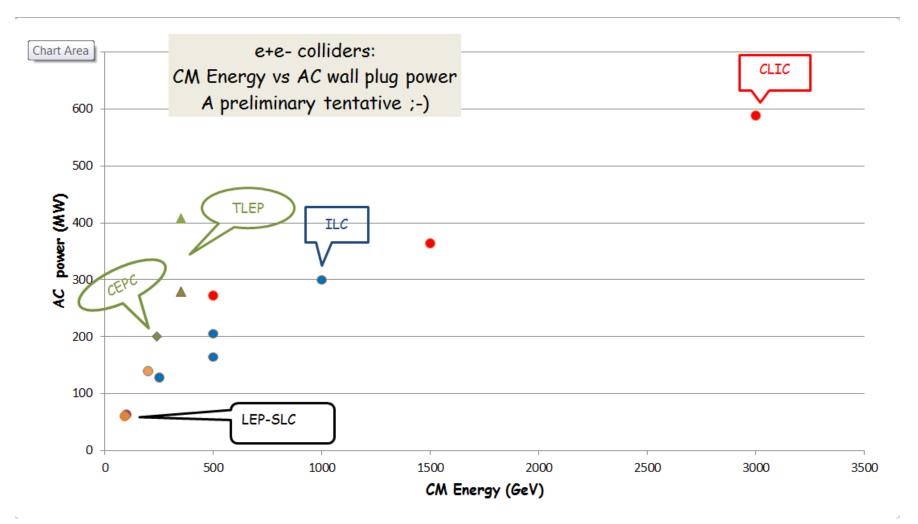
Would be nice to compare with actual data..

High-Energy Physics is all about Energy From eV to TeV

Great saving achieved: technology improvement, operation optimization, disruptive technology shift:


Fix target to colliders exp. NC to SC magnets Warm to cold RF (SC cavities) Circular (e+e-) to linear

Reducing Energy Consumption


Next paradigm shift for higher energies ? (Acceleration in plasma (laser, proton), crystal channels, muon colliders, ... ??)

- Scaling with CM energy, the next colliders linear or circular:
 - Will consume more energy
 - And more, relatively to other consumers
 - People are saving, industry is saving
 - Sustainable energy are part of people life
- Energy will be more expensive
- Environmental issues

HEP got to be involved

 $e+/e-Colliders: P_{AC} vs E_{CM}$

Power and Energy

LHC-CERN ~ 180 MW \rightarrow 1.3 TWh/year ~ 50% Geneva canton electricity consumption

FCC-ee: 354 MW @ 350 GeV(top ring and pre-injection not included)FCC-hh: 468 MW @ 100 TeV(pre-injection NOT included (+100 MW ??) (P. Collier)

ILC: 164MW @ 500GeV - 300MW @ 1TeV (TDR) Experiment, Computing, Buildings => 180 MW @ 500 GeV, 320 MW @ 1 TeV. TDR takes an even larger margin: 300 MW 500 MW

ILC 500 GeV 18% of Iwate prefecture electricity consumption, Morioka (300,000) ILC 1 TeV 32%

- 180\$/MWh 2011 for industry (JP OECD 2013 report, special discount?, price volatility (2024))
- CERN (2011, 70 \$/MWh), ESS (Sweden, 110 \$/MWh)

Yearly electricity running cost: 500 GeV ~ 210 M\$ 1 TeV ~ 380 M\$

P_{AC} , E_{AC} , EC_{AC} are technology driven

- P_{AC} (200-600 MW): AC plug power: good but partial indicator
- E_{AC} (1-4 TWh/year): Yearly Energy Consumption
 - Storage colliders: Beam lifetime
 - Downtime energy consumption (cryogenics)
- EC_{AC} (~70-400 M€): Yearly Running Cost for electricity
 - Site negotiation with the utility company (
 - High tariff period technical management
 - Critical days shutdown: Standby and short time restart, beam condition reproducibility, ...

Energy Consumption/year and Running cost/year are better indicators Both depend also on technology

K/W: Knowledge per Watt Reducing entropy

- 100% of the energy is lost in heat waste
 - Contrary to industry which provides products or services
- Reducing entropy:
 - Industrial watts decrease entropy (temporarily) by building objects or providing services.
 - Research reduces knowledge entropy by building structured theories (e.g. Maxwell equations) ... much more rewarding ... ☺
- the K/W plot
 - Not only CM energy/Watt
 - Luminosity/Watt
 - Nb Higgs + top + .../Watt
 - Higgs coupling accuracy, top mass precision/Watt

•

What is the best figure of merit to assess a technology?

For HEP, Energy Consumption is a major issue

HEP future depends on how and how much we will address this concern:

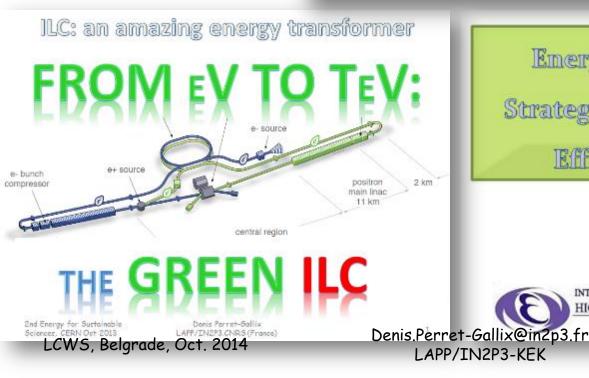
- Bridging Accelerator and Energy R&D: to keep added complexity small
 - must be well structured
 - On parallel tracks and staged to minimize interferences
 - Bring in Energy R&D specific budget
- Decrease running cost and increase operation flexibility
- Contributing to the society (Energy, Environment)
- Escaping from Energy obsolescence: Concord supersonic travel, incandescent light bulb, vacuum tube computers, printed paper, ... not simply due to energy consumption, but still ...

Recent new initiatives

Energy for Sustainable Science 23-25 October 2013 CERN

2nd Workshop Energy for Sustainable Science at Research Infrastructures

- Campus and building management
- Co-generation
- Computing energy management
- Energy efficiency of the facilities
- Energy management, quality, storage
- Energy management technologies developed in Research Facilities
- Waste heat recovery


The Green-ILC initiative

Linear Collider WS Tokyo Nov. 15 2013

A. Suzuki (KEK)

- Availability based on MTBF and MTTR
- 5. Summary

Emergy Management at KEK, Strategy on Emergy Management,

Efficiency, Sustainability

Atsuto Suzuki (KEK)

INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION

European Spallation Source - 4R neutron source

ESS Energy Design report http://europeanspallationsource.se/sites/default/files/20130131_ess_edr.pdf

Renewable:

All energy from new, dedicated renewable production at a stable and competitive cost Responsible: Reduce energy use to under 270 GWh per year

> **Reliable** stable electricity and cooling supplies

Wind Power: 100 MW Machine: 278 GWh/y Cooling: 265 GWh/y

Recyclable:

Completely replace cooling towers with a cooling system based on heat recycling.

EuCARD-2: Enhanced European Coordination for Accelerator Research & Development

EnEfficient WG

ESS, T. Parker	Energy recovery from cooling circuits				
CERN, E. Jensen	Higher electronic efficiency RF power generation				
KIT, M. Sanders	Short term energy storage systems				
GSI, J. Stadlmann	Virtual power plant				
GSI, G. Spiller	Beam transfer channels with low power consumption				

\rightarrow Make it global (ICFA ?)

The Green-ILC initiative

Revisiting all ILC components with a focus on:

- 1. Energy Saving: improving efficiency
- 2. Energy Recovery and Recycling
- 3. Operational saving

Study of renewable energies in the ILC framework:

- 1. Renewable energies production and use
- 2. Energy Storage and conversion to electricity
- 3. Energy Management and Distribution: Local Smart Grid

Green-ILC, a first step toward Sustainable Colliders

ILC baseline energy budget 164 MW @ 500 GeV

Table 11.6

Estimated DKS power loads (MW) at 500 GeV centre-of-mass operation. 'Conventional' refers to power used for the utilities themselves. This includes water pumps and heating, ventilation and air conditioning, (HVAC). 'Emergency' power feeds utilities that must remain operational when main power is lost.

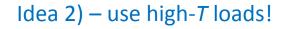
Accelerator		Racks	NC magnets	Cryo	Conventional			
section	RF Power				Normal	Emergency	Total	
e ⁻ sources	1.28	0.09	0.73	0.80	1.47	0.50	4.87	
e^+ sources	1.39	0.09	4.94	0.59	1.83	0.48	9.32	
DR	8.67		2.97	1.45	1.93	0.70	15.72	
RTML	4.76	0.32	1.26		1.19	0.87	8.40	
Main Linac	52.13	4.66	0.91	32.00	12.10	4.30	106.10	
BDS			10.43	0.41	1.34	0.20	12.38	
Dumps					0.00	1.21	1.21	
IR			1.16	2.65	0.90	0.96	5.67	
TOTALS	68.2	5.2	22.4	37.9	20.8	9.2	164 M	N
		,	2	0	4	-		
Rank:	1	6	3	2	4	5		
% :	42	3	15	23	13	5		

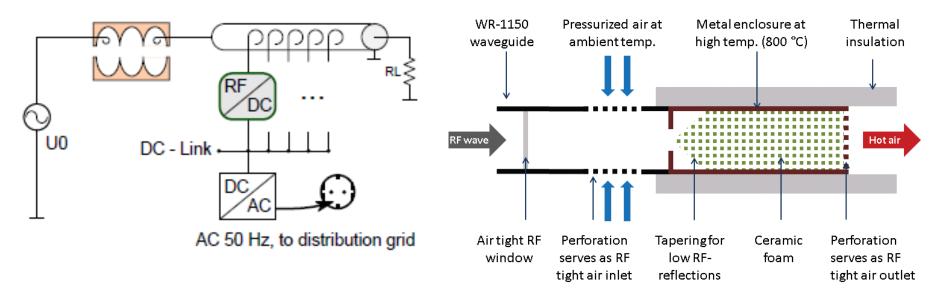
Wall-plug to beam power efficiency is 9.6 %

Green ILC (1) Energy Saving

On components:

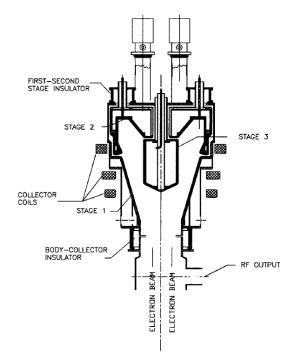
- RF high efficiency (power converter/modulator (90%), klystron (65%), waveguides, power couplers)
- Cryogenics: High efficiency cryocooler and system optimization
 - LN2 precooling and energy storage
- -NC magnets
- -ILC Lattice optimization


On operation


- Power reduction during idle periods:
 - system on standby and energy saving mode, More effective if made on design
 - Long running period (fewer, but longer shutdown due to cryo)
- Increase reliability (to avoid down time)

Recover non-used RF power: Smart RF loads

Idea 1) – reconvert to DC power!



http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/wepd090.pdf
 http://accelconf.web.cern.ch/AccelConf/IPAC2012/papers/thppc023.pdf

Erk Jensen (CERN) EnEfficient RF Sources, The Cockcroft Institute, 3-4 June 2014

ITER Gyrotron depressed collector

110 GHz, 1 MW Multi-stages Depressed Collector Efficiency increased from: 30-35% to 60%

Amarjit Singh et al. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 27, NO. 2, APRIL 1999

ILC Multi-Beam Klystron From 6 beams → 30 beams ??

IOT Inductive Output tubes (multi-beam)

Solid State Sys. see the 100 kW (350 MHz) of LINAC 4

Green ILC (2) Energy Recovery and Recycling

Heat waste from the water cooling systems:

- Increase output temperature: Carnot cycle more efficient with higher temperature gradient
 - Produce electricity, Sterling engines and heat pumps, thermoelectricity, ...
 - Heat/cool nearby cities, green houses, fish farms, drying industry,...
- Recycling efficiency ? Cooling efficiency ? Saving/investment ratio ?
- Many applications to industry

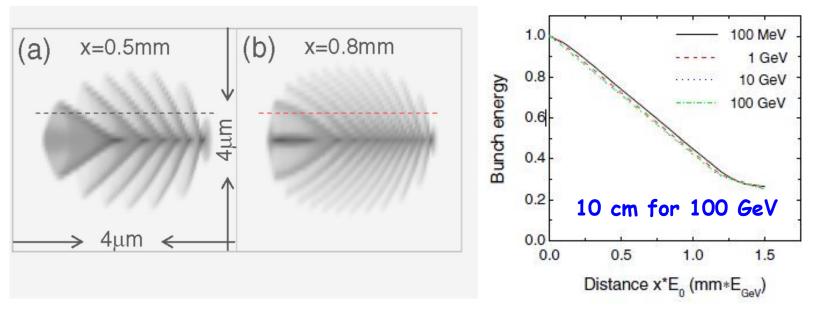
Beam dumps energy recovery

- 2 main full power beam dumps, 5.3 (@500 GeV) 13.6(@1 TeV) MW, pressurized water (155 $^{\circ}C$) + activation
- 1 BD photons 0.3 MW, water at 190 $^{\circ}C$
- How to recover, store and recycle this energy ?, stirling engines, heat pumps, molten salts, LN2
- Other ideas: Plasma deceleration dumping, Energy Recovering Linac

Plasma Deceleration Dumping

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 101303 (2010)

Linear Collider WS Tokyo Nov. 15 2013


A. Suzuki (KEK DG)

Collective deceleration: Toward a compact beam dump

H.-C. Wu,¹ T. Tajima,^{1,2} D. Habs,^{1,2} A. W. Chao,³ and J. Meyer-ter-Vehn¹

¹Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany ²Fakultät für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany ³SLAC National Accelerator Center, Stanford University, Stanford, California 94309, USA (Received 10 December 2009; published 5 October 2010)

Use Collective Fields of Plasmas for Deceleration

- The deceleration distance in the underdense plasma is 3 orders of magnitude smaller than the stopping in condensed matter.
- > The muon fluence is highly peaked in the forward direction.

How much will we save?

10, 20, 30% great !!!

Will it be enough for the highest energies ???

Probably not

HEP must reach sustainability

Sustainability is efficiency and renewable energy

LCWS, Belgrade, Oct. 2014

Green ILC (3) Sustainable Energies

Energy Production:

- Study the pros/cons of various sources: solar, wind, geothermal, sea, ..., smr,...
 - Availability, Price, Flexibility, Potential for improvement, Environmental impact
- Find the best energy mix to cover ILC specific needs ? 24/7, long shutdowns, ...
- Match ILC component to the energy sources specifics:
 - RF power converter: PhotoVoltaic, fuel cells (DC)
 - Cryocooler or asynchronous liquefactors ?

Energy Storage: HEP, experts in some of these technologies

 Liquid Helium, Nitrogen, SMES(Sc Magnetic Energy Storage), Flywheel, Pumped hydro, Compressed air, Batteries, ...

Distribution: Local Smart GRID:

Full scale multi-sourced, AC/DC, GRID management and control

- Smooth and rapid switching between energy sources, including conventional supply
- Energy Monitoring, Management and forecast: production, storage and backup

Example: An LN₂ Economy for ILC

The ILC cryogenics is consuming ~ 40 MW (25% of ILC AC power)

- In current design all cooling is done with LHe. LN2 as a primary coolant -> 20 MW
- LN2 cooling: HTc (MgB2) power transmission lines, NC magnets, electronics/computers,
- LN2 could be used to recycle low grade heat waste or/and high temp. beam dumps
- And produce electricity with high-pressure gas turbine (70% efficiency)

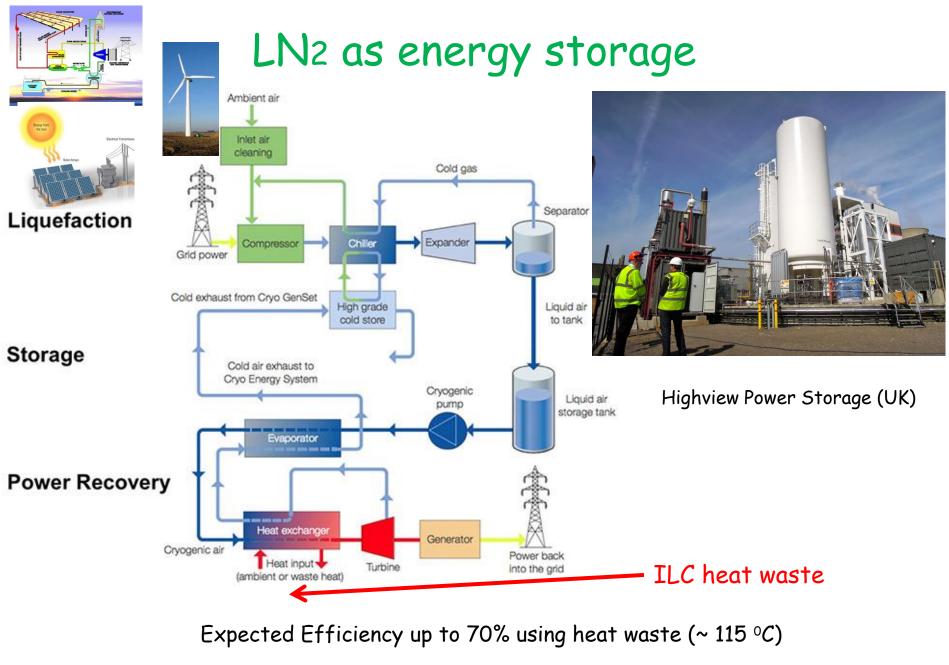
LN2 could be produced by sustainable energies

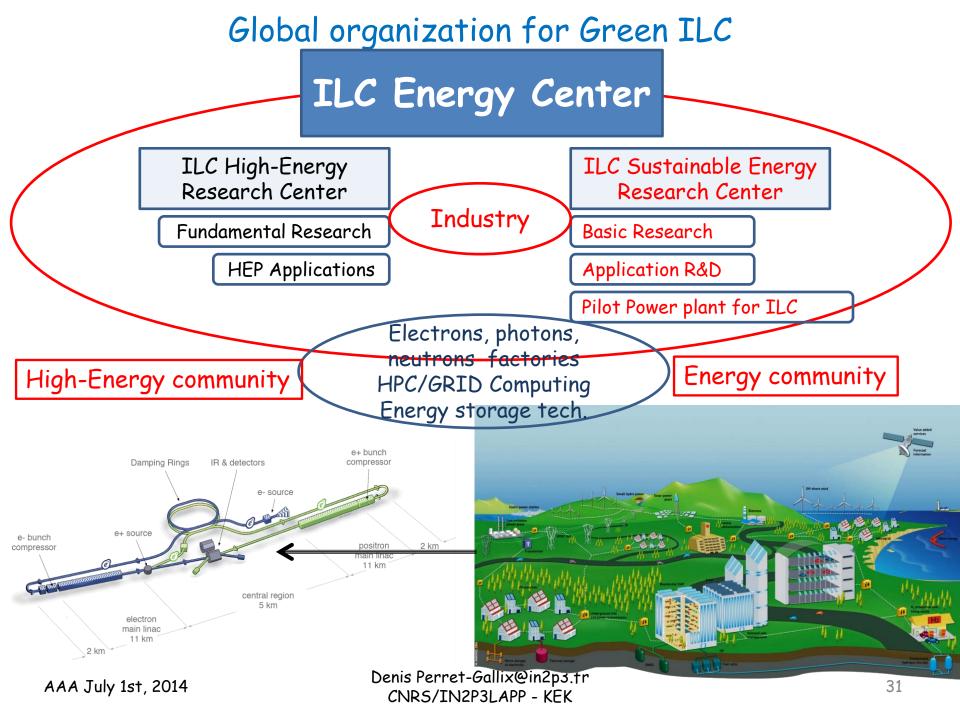
- Close to or at the ILC site (wind, solar, geothermal energy)
- Wind energy: from electricity or direct compression
- Byproducts: liquid oxygen, argon, capture CO₂, ...

LN2 Energy storage

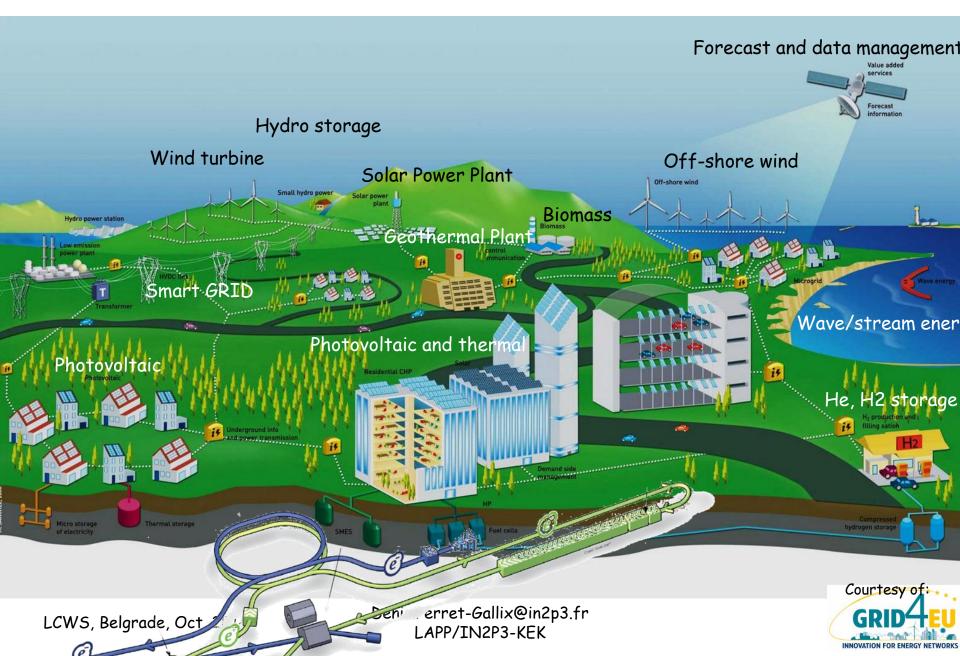
First LN2 car

Sumimoto AAA July 1st, 2014




Denis Perret-Gallix@in2p3.fr CNRS/IN2P3LAPP - KEK

Liquid air energy network 8



Denis Perret-Gallix@in2p3.fr CNRS/IN2P3LAPP - KEK

Global Energy Center

The "ILC Energy Center"

Home Blog Archives
Research Conferences Documents Links Contacts

The Green ILC Project

ILC, the International Linear Collider, is the next fundamental science project in high energy physics and the first ever true global basic science center.

What <u>CERN</u> did for the European HEP community, ILC will do for the world. But the e+e- ILC project may go even beyond mere fundamental science and contribute to one of the world most pregnant issue: Energy, not merely high-energy but, more generally: energy for the society.

Artistic view of the ILC center in Kitakami (Japan) ILC-Iwate

The ILC scientific goal is simple: high precision study of the Higgs particle recently discovered at LHC (CERN) and other signals LHC could possibly single out. New effects will also be searched for, effects which could have been missed by the LHC due to the heavy background. <u>Higher precision</u> here concerns, more particularly, the various Higgs couplings, limited at LHC, in part, by the complex structure of the interacting particles, the protons compared to the elementary electrons. Higher precision through higher order corrections would also shed light on an energy regions

AAA July 1st, 2014

Denis Perret-Gallix@in2p3.fr CNRS/IN2P3LAPP - KEK

Recent Posts

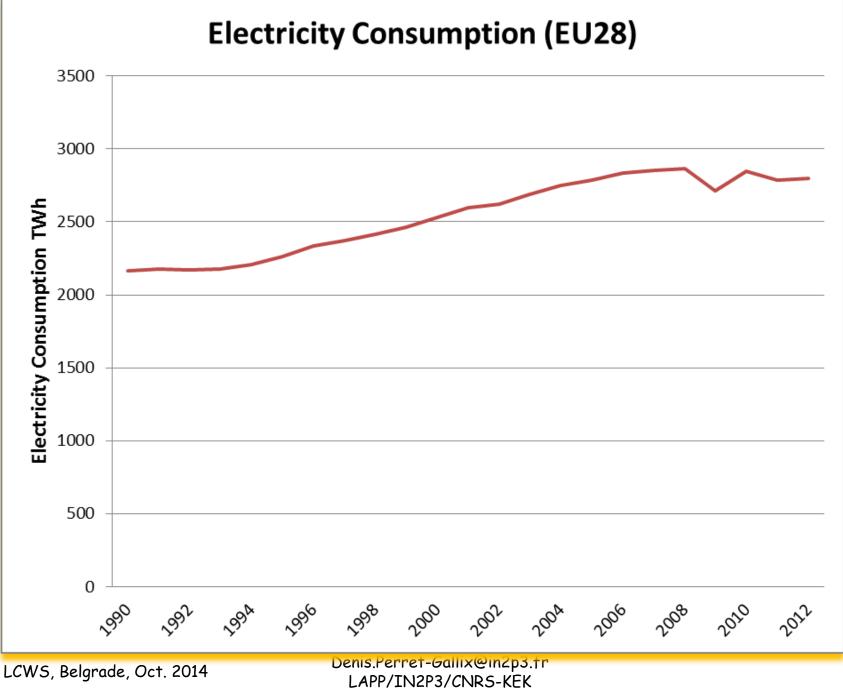
EUCARD2 EnEfficient Liquid Air in the Energy and Transport. Systems CEA Liten Mega Solar Plant in Japan Ivanpah: World Largest Solar Plant

RSS

Links

email: green.accelerators@gmail.com Green-ILC wiki Green-ILC group discussion

Messages


- Energy consumption is a burning hot parameter
 - Linked to many scientific, technological, financial, societal, political issues
 - Could be a no-go for some projects
 - Not a taboo or worst a technical detail: must be bluntly addressed
- Future of HEP: Saving, recovery, recycling: a must, but not enough for sustainability,
 - \rightarrow renewable energy
 - Follow and contribute to energy/environment civilization shift
 - Storage, a master word, needed for recycling and renewable energies.
 - E.g. LN₂ economy
- Energy R&D is core to HEP Research
 - HEP is all about energy, HEP needs energy.
 - Must structure a Global effort:
 - Build on existing initiatives: Green-ILC, EUCARD2 EnEfficient, Sustainable Science Workshop,...
 - Collaboration with Energy R&D and Industry (Japan AAA Green-ILC)
 - ICFA could take initiative: sustainable accelerator panel
 - Next global infrastructure should be seen as an "Energy Center"
 - Make HEP a bright future and bring benefit to the society

Let's do it the smart way

LCWS, Belgrade, Oct. 2014

Thank you for your attention

LCWS, Belgrade, Oct. 2014

Green-ILC Roadmap

• Identify the energy saving, recycling and recovery potentials for all major ILC components.

Base-line and Advanced-line on more innovative technologies.

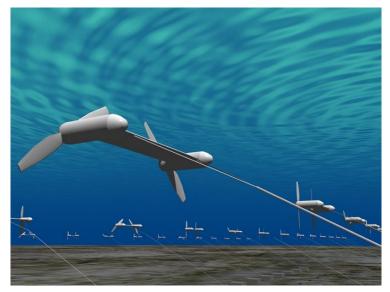
- ILC Design modifications:
 - What can be implemented in the design before request for tenders?
 - What advanced R&D should be carried out before future extensions ?
- Implementation timeline (minimum impact of the ILC planning)
- Budget assessment: additional spending and saving
- Design a global sustainable energy program for ILC
 - Get the "Energy research" community and organization and the "Industry leaders" involved in a network.
 - Propose a global governance scheme for the "ILC Energy Center"
 - Form an additional budget for the "Sustainable Energy Center" (no ILC money)
 - Identify short term renewable energy pilot plants with build-in upgradability
 - Identify basic energy researches in line with the ILC project

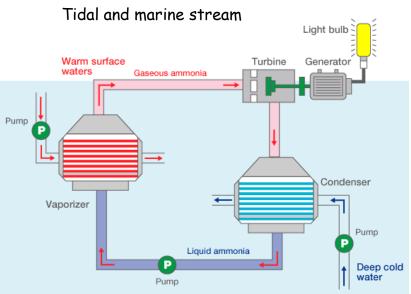
Green-ILC project report by 2015

LCWS, Belgrade, Oct. 2014

Timeline for a sustainable ILC

Gradual and Multi-Staged


e.g.


1.	As a backup to the conventional power supply (diesel engines)	7 MW
2.	To cover buildings energy through recycling and storage (electricity and heating) (zero energy)	10 MW
3.	To cover some parts of the ILC: computers (fuel cells), water cooling, part of the cryo plants	10-20 MW
4.	To power more of the previous components	30-40 MW
5.	To power some of the klystrons	100 MW
	All 500 GeV ILC electrical supply – Conventional power supply is now in backup mode	170 MW
7.	Get ready for the 1 TeV	+150 MW

Wind/Marine Energy

2 MW Goto island prototype

Sea temperature gradient

2.3 GW installed, none failed after 3/11

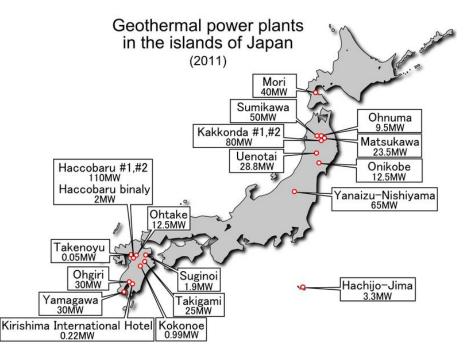
Wind Projects 6 floating 2MW wind turbines off Fukushima up to 80 in 2020

LCWS, Belgrade, Oct. 2014

Biomass/biofuels Energy

Idemitsu Kosan Co. 5 MW

Installed 2.3 GW (2011) very little progress since 2011


Miyasaki , Nishinippon Env. Energy co. 11.7 MW

Many sources including: Rice, fishery and agricultural wastes Algae Other cattle and human wastes

Co-generations heat and electricity

Geothermal Energy

Installed 2011 : 0.5 GW. Geothermal potential sources : ~ 20 GW

No substantial progress since 2011

But:

- Avoid National Parks
- Get agreement with the onsen industry
- No Fracking

LCWS, Belgrade, Oct. 2014

Photovoltaic and Thermal Solar energy

10 MW Komekurayama 30 km Fuji-san (TEPCO)

Installed: 8.5 GW Projects: 341 MW in Hokaido 100 MW Minami Soma

2009 Target Japanese gov.
28 GW of solar PV capacity by 2020
53 GW of solar PV capacity by 2030
10% of total domestic primary energy demand met with solar PV by 2050

LCWS, Belgrade, Oct. 2014

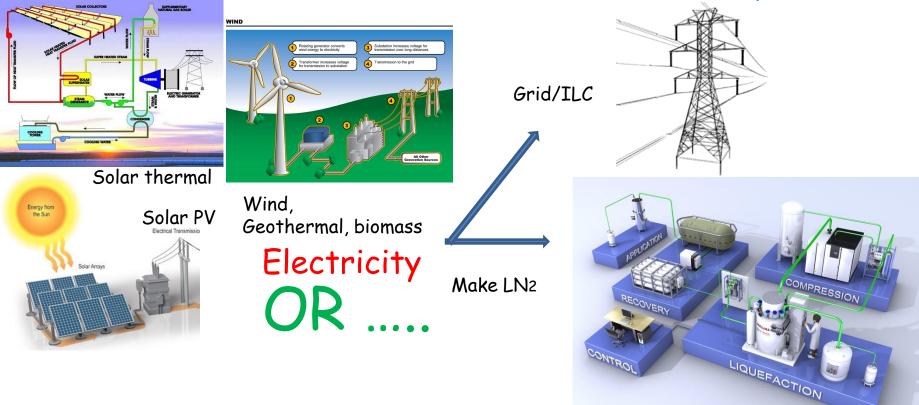
Denis.Perret-Gallix@in2 LAPP/IN2P3-KEK

CERN press office

Media visits Press releases For journalists For CERN people Contact us

Major contract signed for supply of solar panels derived from CERN technology

09 Mar 2012



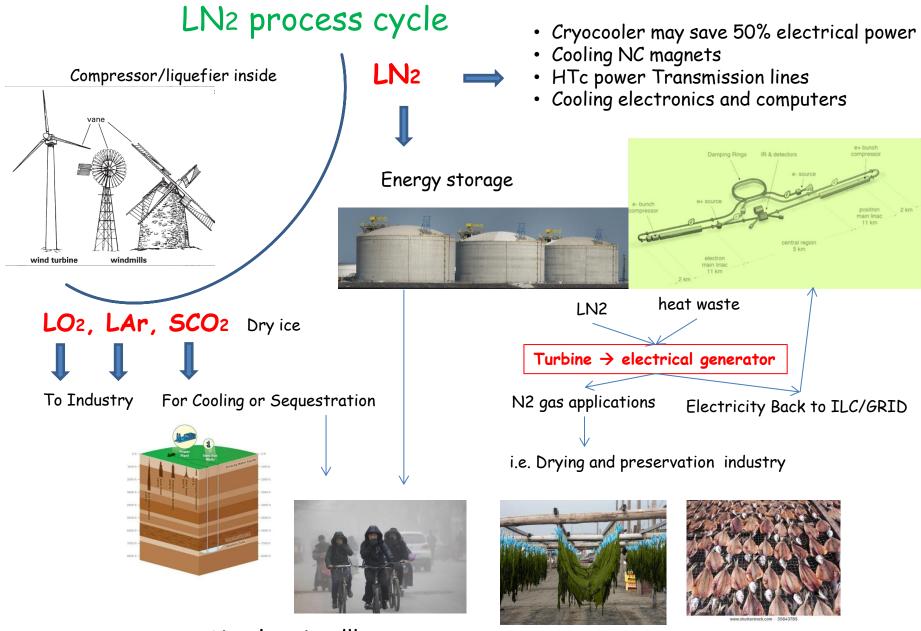
SRB Solar field in Valencia (Image: CERN)

Solar thermal Energy

C. Benvenuti CERN Physicist

LN2 Electrical Production and Transport

By Cryo Pipeline Longest LNG ~ 5 km


HTc SC power line (project) by 20 Km long section

AAA July 1st, 2014

Denis Perret-Gallix@in2p3.fr CNRS/IN2P3LAPP - KEK

Air cleaning !!! Denis Perret-Gallix@in2p3.fr CNRS/IN2P3LAPP - KEK

AAA July 1st, 2014

44