

H->ZZ* and Higgs production in ZZ fusion at 1.4 TeV CLIC

<u>G. Milutinovic-Dumbelovic¹</u>, A.Robson²

P.Roloff³, I. Bozovic-Jelisavcic¹

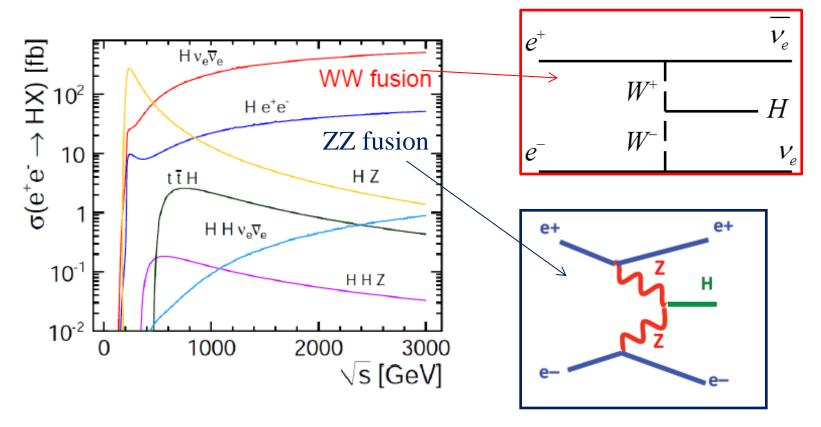
¹Vinca Institute of Nuclear Sciences, University of Belgrade ²University of Glasgow ³CERN

on behalf of the CLICdp collaboration

LCWS14, 6–10 October 2014, Belgrade

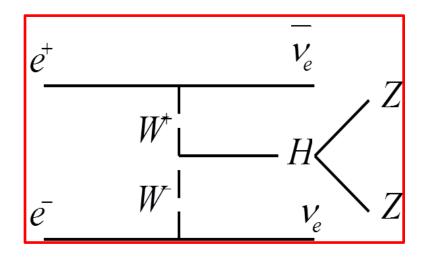
Overview

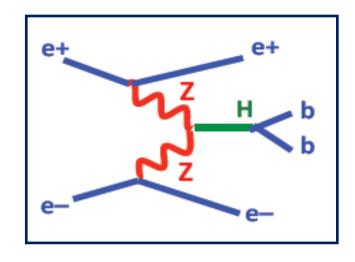
- What is in common
- Introduction
- $H \rightarrow ZZ^*$
- Higgs production in ZZ fusion
- Conclusion


What is in common

- Both analysis are converging to final figures up to the minor tuning.
- CLIC_ILD detector model is fully simulated in both analysis.
- Similar approach to the method: preselection, b-tagging, MVA to handle numerous backgrounds.

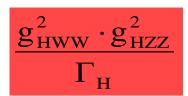
3

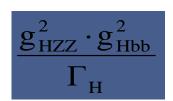

Higgs production at 1.4 TeV



- Using WHIZARD V.1.95, including
 ISR and realistic CLIC beam spectrum
- WW fusion: $\sigma(e+e \rightarrow H\nu\nu) \approx 244 \text{ fb}$
- ZZ fusion: $\sigma(e+e \rightarrow Hee) \approx 24.5 \text{ fb}$

Signal processes



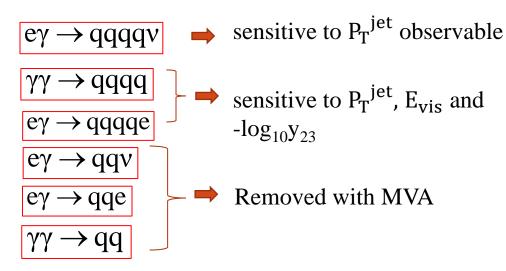

- BR(H \rightarrow ZZ*) $\approx 2.89\% \Rightarrow \sigma_{HWW} \times BR \approx 7.05 \text{ fb}$
- BR($Z\rightarrow qq$) $\approx 70 \%$

Gordana Milutinovic-Dumbelovic

- $N_s(ZZ^* \to qqqq) \approx 5175/1.5 \text{ ab}^{-1}$
- BR($Z\rightarrow e+e-$, $Z\rightarrow \mu+\mu-$) $\approx 6.8 \%$
- $N_s(ZZ^* \rightarrow qqe+e-, ZZ^* \rightarrow qq\mu+\mu-) \approx 900/1.5 \text{ ab}^{-1}$

- BR(H \rightarrow bb) \approx 56.1% \Rightarrow $\sigma_{HZZ} \times BR \approx 13.74 \text{ fb}$
- $N_s \approx 3878/1.5 \text{ ab}^{-1}$

Main background processes


- Both analyses have numerous background processes
- Background are mostly suppressed with preselection cuts and MVA

Hvv, $H \rightarrow ZZ$

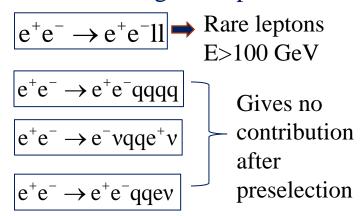
• WW fusion gives irreducible background:

$$e^+e^- \to H\nu_e \overline{\nu_e}, H \to WW \to qqqq$$

Large x-sec background samples:

Multi-jet background:

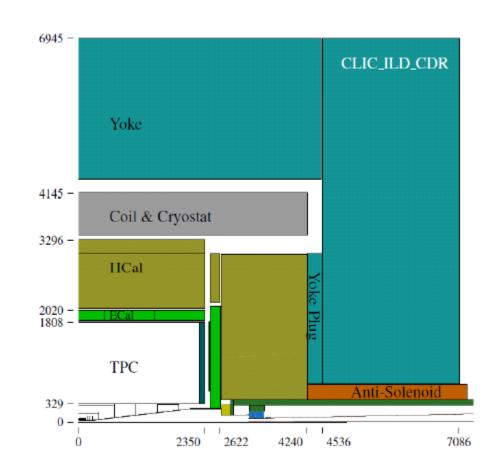
 $e^+e^- \rightarrow qqv_e \overline{v_e}$ \rightarrow Large x-sec background, can not be fully suppressed with y_{23} transition


Hee, H→bb

Main background:

$$|e^+e^- \rightarrow e^+e^-qq|$$

Several processes with the same final state, sensitive to b-tagging


Other background processes:

Detector simulation and reconstruction

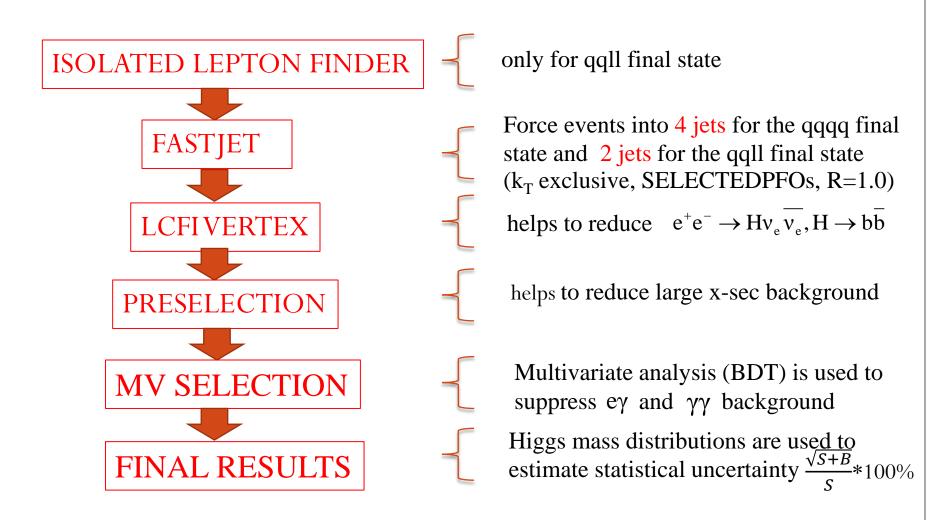
- Full CLIC_ILD detector simulation
- Overlay of beam-induced background $\gamma\gamma \rightarrow$ hadrons
- Full event reconstruction

H->ZZ* at 1.4 TeV

Gordana Milutinovic-Dumbelovic

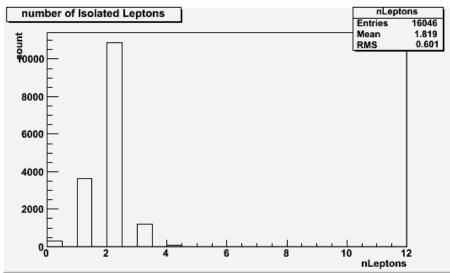
Signal and background x-sections

Signal 1 [fb]: $H \rightarrow ZZ \rightarrow qqqq$	Signal 2[fb]: $H \rightarrow ZZ \rightarrow qqll$						
3.45	0.6						
Common background [fb]							
$e^+e^- \rightarrow qqv_e v_e$	$v_{\rm e} \overline{v_{\rm e}}$ 788						
$e^+e^- \rightarrow qqqqv_e \overline{v_e}$	24.7						
$e^+e^- \to H\nu_e \overline{\nu_e}, H \to WW \to qqqq$	27.6						
$e^+e^- \rightarrow qq$	4009.5						
$e^+e^- \rightarrow qqqq$	1245.1						
$e^+e^- \rightarrow qqqqll$	71.7						
$e^+e^- \rightarrow qqqqlv$	115.3						
$e^+e^- \rightarrow Hv_e \overline{v_e}, H \rightarrow b\overline{b}$	136.94						
$e^+e^- \to H\nu_e\overline{\nu_e}, H \to ZZ \to qqll/llll$	0.177						
Signal 1 specific background[fb]	Signal 2 specific background[fb]						
$e\gamma \rightarrow qqqqv$ 338.5	$e^+e^- \rightarrow qqll$ 2725.8						
$\gamma\gamma \rightarrow qqqq$ 30212	$e\gamma \rightarrow qqv$ 37125.3						
$e\gamma \rightarrow qqqqe$ 2891	$e\gamma \rightarrow qqe$ 63838.8						


 $\gamma\gamma \rightarrow qq$

112038.6

Gordana Milutinovic-Dumbelovia


Analysis strategy

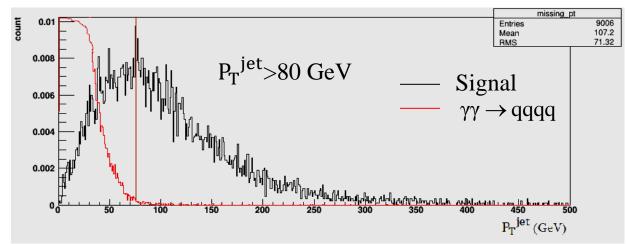
Step by step: Isolated Lepton Finder

- We have to identify e^- and μ form the $H \rightarrow ZZ \rightarrow qqll$ final state
 - Track energy > 7 GeV
 - Energy contained in a cone around the track: $\cos \theta < 0.995$
 - Impact parameters: $d_0 < 0.2 \, mm$, $z_0 < 0.2 \, mm$, $R_0 < 0.2 \, mm$
 - ECAL/HCAL depositions: 0.025< μ ECAL to HCAL fraction<0.3,
 e⁻ ECAL to HCAL fraction>0.9

74% efficiency in reconstruction of the lepton pair

Step by step: Preselection

Main aim of the preselection is to reduce large x-sec background


 $\begin{aligned} & \text{Preselecton for qqqq final state: } 45 \text{GeV} < \text{m}_{\text{Z}} < 110 \text{GeV}, \text{m}_{\text{z}^*} < 65 \text{GeV}, \\ & 90 \text{ GeV} < \text{m}_{\text{H}} < 165 \text{ GeV}, -\text{log}_{10} \text{y}_{34} < 3.5, -\text{log}_{10} \text{y}_{23} < 3.0, 100 \text{GeV} < \text{E}_{\text{vis}} < 600 \text{GeV}, \\ & P_{\text{T}}^{\text{jet}} > 80 \text{ GeV}, \text{ P(b)}^{\text{jet1}} < 0.95, \text{ P(b)}^{\text{jet2}} < 0.95 \end{aligned}$

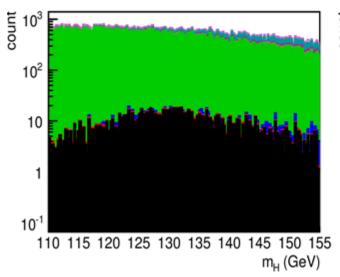
Preselecton for qqll final state: It is important to find two isolated leptons

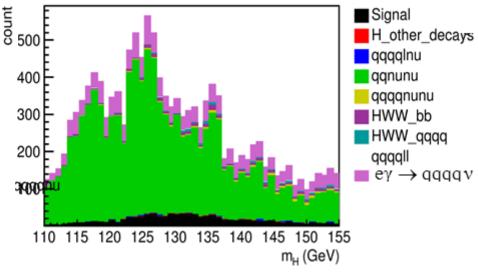
Dominant remaining background:

For qqqq final state: $H \rightarrow WW \rightarrow qqqq \ e^+e^- \rightarrow qqv_e \overline{v_e}$, $e\gamma \rightarrow qqqqv$, $H \rightarrow b\overline{b}$

For qqll final state: $e^+e^- \rightarrow qqll$, $e\gamma \rightarrow qqv$, $e\gamma \rightarrow qqe$, $\gamma\gamma \rightarrow qq$, $H \rightarrow b\bar{b}$

12


LCWS14, 6–10 October 2014, Belgrade


Step by step: MVA analysis

qqqq final state

- BDT is trained on $e^+e^- \to H\nu_e \overline{\nu_e}, H \to b\bar{b}, e^+e^- \to qq\nu_e \nu_e, e\gamma \to qqqq\nu$
- TMVA input variables $(m_H, m_Z, m_{z^*}, E_{vis}, -log_{10}y_{34}, -log_{10}y_{23}, P_T^{jet}, P(b)^{jet1}, P(b)^{jet2}, P(c)^{jet2}).$
- For combined background all input variables have similar discriminating power

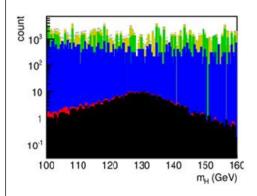
Preselection efficiency 30.2%

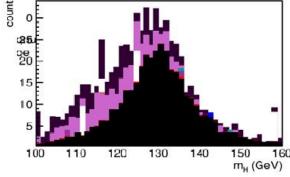
Overall signal efficiency 18%

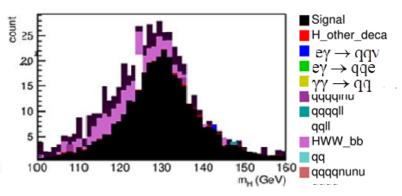
Step by step: MVA analysis

qqqq final state cont.

- Preselection efficiency is relatively low due to $P_T^{jet} > 80$ GeV cut in order to suppress $e\gamma \rightarrow qqqq\nu$ and $e\gamma \rightarrow qqqqe$
- After MVA $e\gamma \rightarrow qqqqv \ (e^+e^- \rightarrow qqv_e \overline{v_e})$ are reduced by factor 2(3).
- Statistical uncertainty of the measurement $(\sigma_{HWW} \times BR)$ is estimated from the Higgs mass distribution after MVA


$$\frac{\sqrt{S+B}}{S} * 100\% = 18.3\%$$




Step by step: MVA analysis

qqll final state cont.

- BDT is trained on total background
- TMVA input variables $(m_H, m_Z, m_{z^*}, E_{vis}, -log_{10}y_{34}, -log_{10}y_{23}, -log_{10}y_{12}, P(b)^{jet1}, P(b)^{jet2}, P(c)^{jet2}, P_T^{jet}, \theta_{Higgs}, E_{vis} E_{Higgs}, N_{PFOs}).$
- Differently from qqqq final state preselection is looser and the final selection (P_T^{jet} <500 GeV, E_{vis} E_{Higgs} < 220 GeV, 40< N_{PFOs} <160) is applied in order to suppress remaining background.

Preselection efficiency 74% MVA efficiency 33%

Overall signal efficiency 33%

$$\frac{\sqrt{S+B}}{S}$$
*100% = 6.1 %

Results

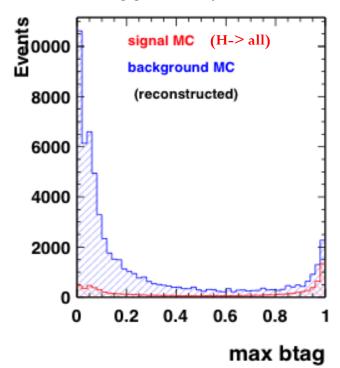
$H \rightarrow ZZ \rightarrow qqqq$				
$\mathbf{\epsilon}_{\mathrm{s}}$	18%			
$\sigma_{\text{WWH}} \times \text{BR}(H \to ZZ \to qqqq)$	3.45 fb			
$\delta(\sigma_{WWH} \times BR(H \to ZZ \to qqqq))$	18.3%			

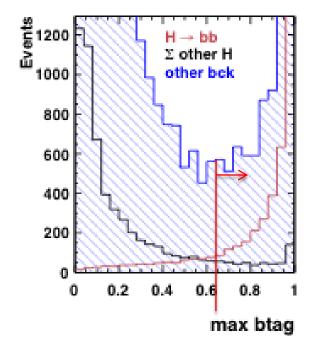
$H \rightarrow ZZ \rightarrow qqll$				
$\mathbf{\epsilon}_{\mathrm{s}}$	33%			
$\sigma_{\text{WWH}} \times \text{BR}(H \to ZZ \to qqll)$	0.6 fb			
$\delta(\sigma_{WWH} \times BR(H \to ZZ \to qqll))$	6.1%			

- For the qqqq final state, uncertainty of the measurement is dominated by background with large x-sections and by irreducible background with the same topology as the signal
- For the qqll final state, uncertainty of the measurement is dominated by background from WW fusion processes, $e^+e^- \to H\nu_e\nu_e$, $H \to WW$ and $e^+e^- \to H\nu_e\nu_e$, $H \to b\bar{b}$
- Unpolarized beams are assumed. Statistics can be improved with polarization due to the boost of the production x-section.
- Further optimisation of the Isolated Lepton finder will be done to (slightly) increase efficiency in reconstruction of the lepton pair. τ leptons will be included in the analysis.

Higgs production in ZZ fusion

Aidan Robson

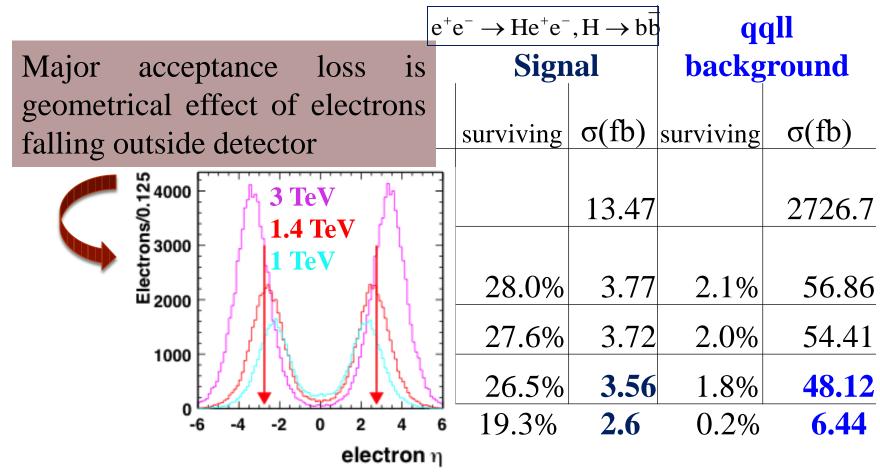

Analysis strategy


Events forced into 4-jet **FASTJET** ($k_{\rm T}$ exclusive clustering of PFOs, R=1.0) SIMPLE KINEMATIC 2 opposite-charge electrons, E>100GeV and separated Δη>1 **SELECTION** LCFI VERTEX b-tag for final state **MV SELECTION** Multivariate likelihood analysis Extract statistical uncertainty FIT $\delta(\sigma_{ZZH} \times BR(H \rightarrow b\bar{b}))$

b-tagging final state

- After kinematic pre-selection:
- In 4-jet exclusive clustering, identify two jets that match e[±] candidates, and look at larger b-tag of other two jets ('max btag')
- Using LCFIVertex and generic Zvv, Z->bb/cc/light datasets to train
- all Higgs decays included here

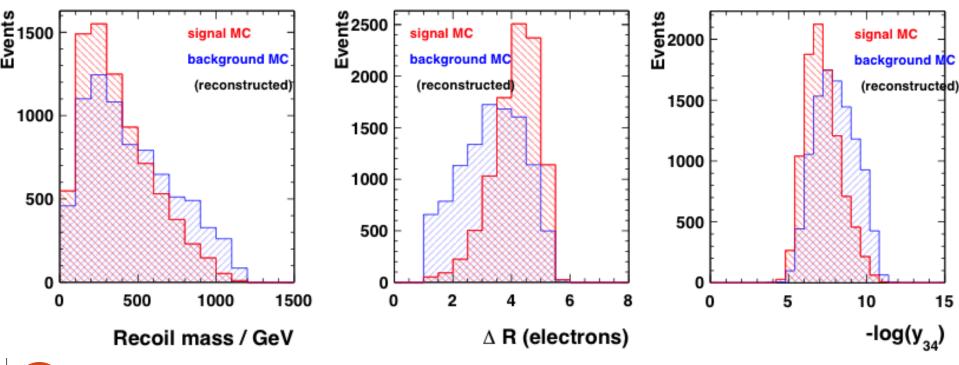
• Choose max btag > 0.65



Preselection + btag

		e	$e^+e^- \rightarrow He^+e^-, H \rightarrow b\bar{b}$		qqll	
Major	acceptance loss	S	Sign	al	backg	round
	rical effect of electron outside detector	IS	surviving	σ(fb)	surviving	σ(fb)
	All events ==2 electron cands,			13.47		2726.7
	<i>E</i> >100GeV		28.0%	3.77	2.1%	56.86
	opposite charge		27.6%	3.72	2.0%	54.41
	$\Delta\eta$ >1		26.5%	3.56	1.8%	48.12
	Max btag > 0.65		19.3%	2.6	0.2%	6.44

Preselection + btag



Separating signal from background

- Look for event variables to characterise signal
 - separation between electrons ΔR
 - recoil mass
 - y_{34} to characterise final state shape

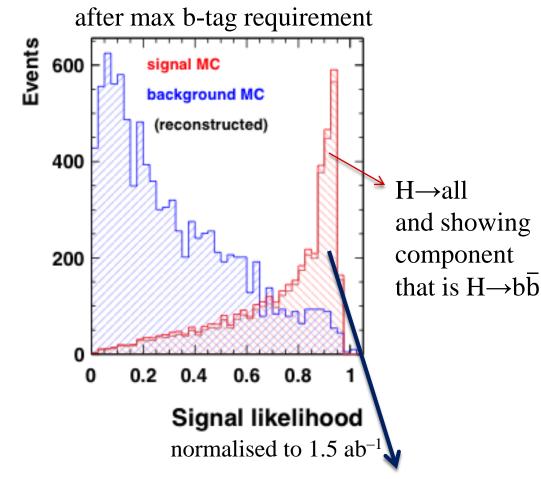
fairly independent of decay mode, for visible decays

Background normalised to signal here

Gordana Milutinovic-Dumbelovic

LCWS14, 6–10 October 2014, Belgrade

Likelihood incorporating final state jets


- ΔR between tagging electrons
- recoil mass
- **y**₃₄
- \mathbf{m}_{jj}

Construct probabilities:

$$L_{sig} = P_{sig}(\Delta R) \times P_{sig}(m_{recoil}) \times P_{sig}(y_{34}) \times P_{sig}(m_{ii})$$

Signal likelihood:

$$\mathcal{L}_{\text{sig}} = \frac{L_{\text{sig}}}{L_{\text{sig}} + L_{\text{bck}}}$$

 $4190 \text{ ZZ} \rightarrow \text{H events in } 1.5 \text{ ab}^{-1}$ of which 3880 are $\text{ZZ} \rightarrow \text{H} \rightarrow \text{b}\bar{\text{b}}$

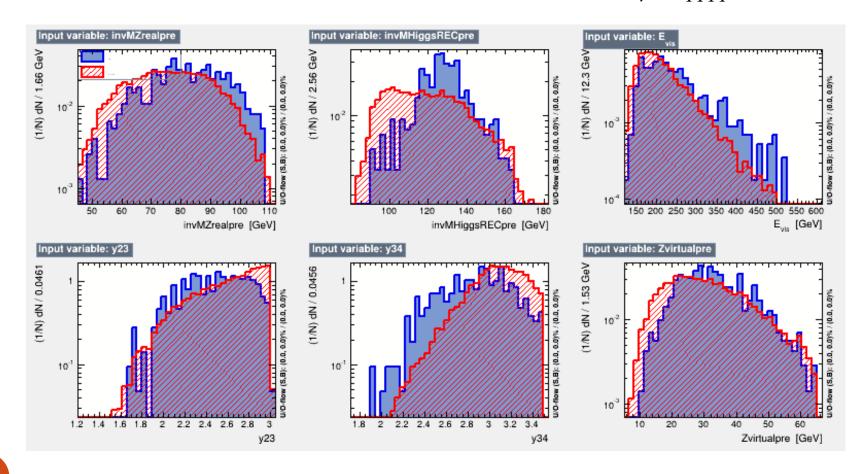
Results

$e^+e^- \rightarrow He^+e^-, H \rightarrow b\overline{b}$				
$\mathbf{\mathcal{E}}_{_{\mathrm{S}}}$	19.3%			
$\sigma_{\rm ZZH} \times { m BR}(H o b\overline{b})$	13.74 fb			
$\delta(\sigma_{\rm ZZH} \times {\rm BR}(H \to b\overline{b}))$	1.7%			

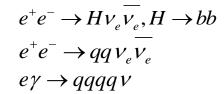
- Systematic effects of 0.3% from limited knowledge of beam spectrum and 0.5% from b-tagging give total uncertainty 1.7%.
- Measurement proportional to $\frac{g_{\rm HZZ}^2 \cdot g_{\rm Hbb}^2}{\Gamma_{\rm H}}$ and result is included in global Higgs fit to contribute to $g_{\rm HZZ}$ determination.

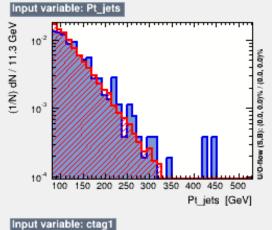
Conclusion

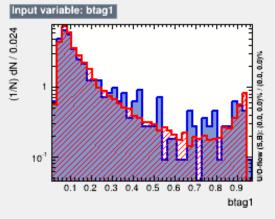
- Two analysis at 1.4 TeV CLIC are presented: $\sigma_{WWH} \times BR(H \to ZZ^*)$ and $\sigma_{ZZH} \times BR(H \to b\bar{b})$.
- Full simulation of physics and background processes is performed with the CLIC_ILD detector model at 1.4 TeV cms energy.
- These measurements allow us to access $\frac{g_{HWW}^2 \cdot g_{HZZ}^2}{\Gamma_H}$ and $\frac{g_{HZZ}^2 \cdot g_{Hbb}^2}{\Gamma_H}$ and contribute to the global fit.
- Corresponding statistical accuracies are:
 - a. 18.3% $(\sigma_{WWH} \times BR(H \rightarrow ZZ^* \rightarrow qqqq))$
 - b. 6.1% $(\sigma_{WWH} \times BR(H \rightarrow ZZ^* \rightarrow qqll))$
 - c. $1.7\% (\sigma_{ZZH} \times BR(H \rightarrow b\overline{b}))$
- Statistical accuracies are dominantly coming from: irreducible background and limited statistic of the signal in a and b,c respectively.
- Overall uncertainty of all measurements is dominated by statistics.

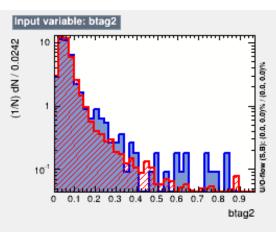

XBAЛA THANK YOU

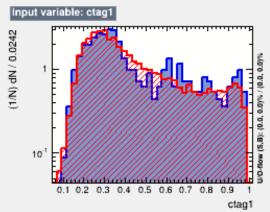
BACK UP

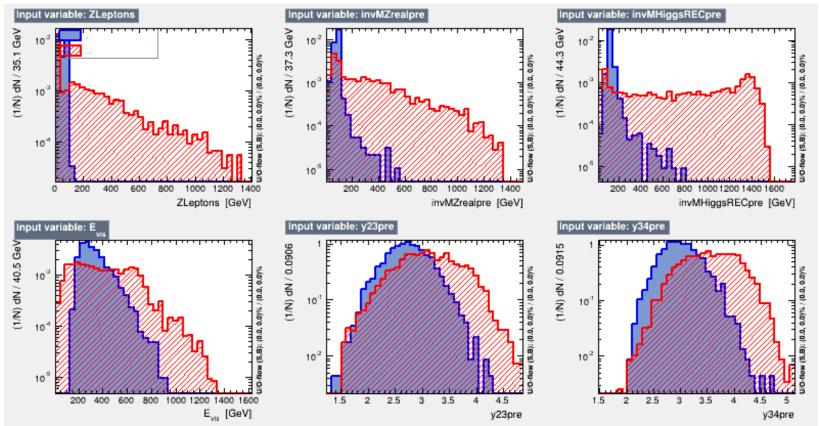

Signal Background $e^{+}e^{-} \rightarrow Hv_{e}\overline{v_{e}}, H \rightarrow bb$ $e^{+}e^{-} \rightarrow qqv_{e}\overline{v_{e}}$ $e\gamma \rightarrow qqqqv$

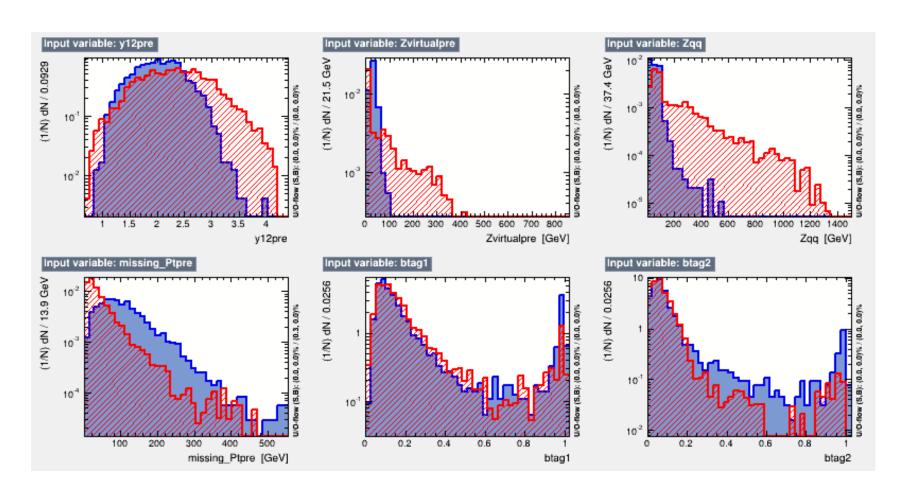


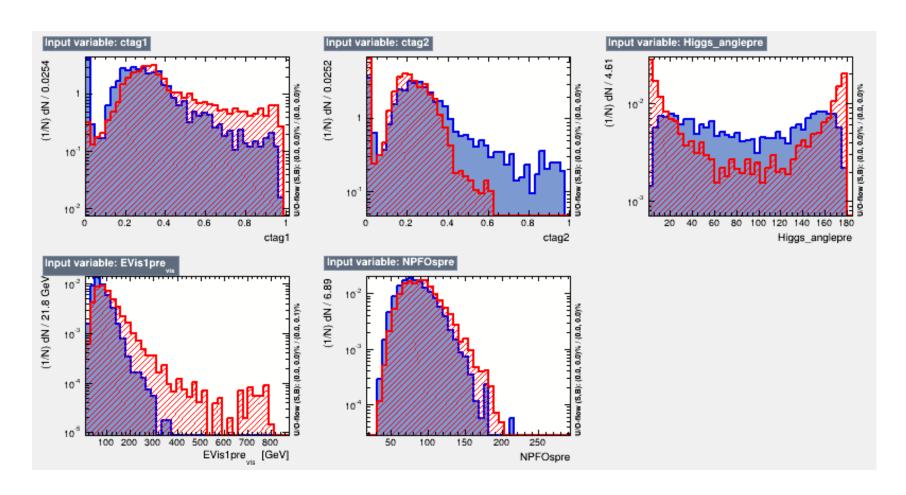


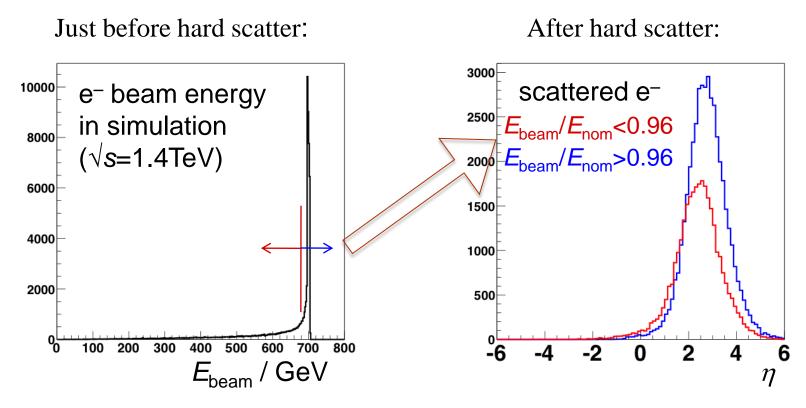



Signal Background






• TMVA trained with sensitive observables (m_{Z1}, -log (y₃₄), -log(y₂₃), -log(y₁₂), P(b)^{jet1}, P(b)^{jet2}, P(c)^{jet1}, P(c)^{jet2}, Evis, missing_Pt, Higgs_angle, m_H, Zleptons, Zqq, Evis1, NPFOs) on total background

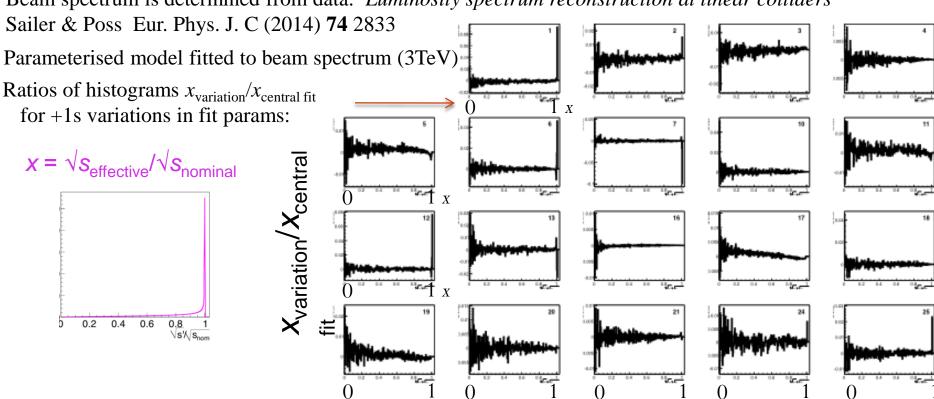


Beam spectrum systematic

Detector acceptance cuts into electron η distribution.

To measure cross-section need to know acceptance.

Beam spectrum?



Low tail is important in this measurement. How well do we know it?

Beam spectrum systematic

Beam spectrum is determined from data: Luminosity spectrum reconstruction at linear colliders

These are used to reweight $x = \sqrt{s_{\text{effective}}}/\sqrt{s_{\text{nominal}}}$ distribution in ZZ fusion signal MC by±1s variations for 19 parameters (ie propagating the uncertainties only) Looked at effect on h distribution of scattered electrons, and total acceptance.

Acceptance variations combined using parameter correlation matrix.

Resulting systematic on cross-section is ± 0.3 %