

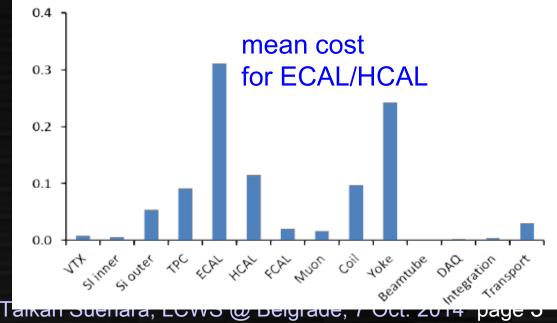
Hybrid ECAL: optimization and related developments

Taikan Suehara H. Hirai, H. Sumida, Y. Sudo, T. Yoshioka, K. Kawagoe (Kyushu University, Japan)

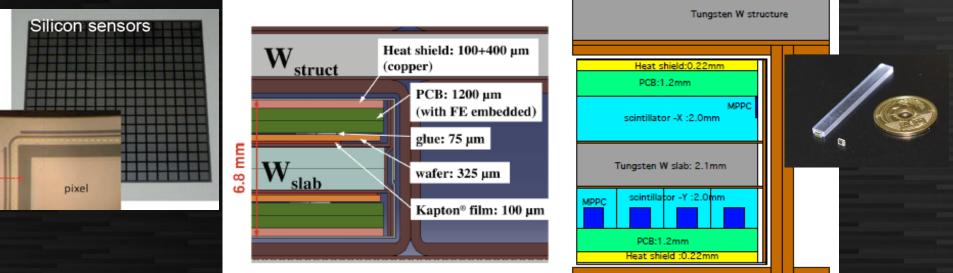
- Why hybrid?
- Optimization
- Combined DAQ
- Plans


ILD & ECAL

ILD: Intl. "Large" Detector r_{ECAL} = 1800 mm (SiD: 1200 mm)


7833

Excellent PFA power but expensive ECAL/Yoke



ILD cost in DBD: 391.8 MILCU in total

ILD ECAL: Silicon and Scintillator ScECAL SiECAL

Tungsten absorber + Silicon Tungsten + Scintillator strips 320 μm (maybe 500 μm) 5 x 5 mm² pixels 256 pixels / chip Expensive sensor

1 mm thick (10-20 photons) 5 x 45 mm² crossing strips Each strip should be wrapped Price is about half of Silicon (dominated by PPD)

A comparison

V. Balagura (LLR), ILD meeting in Oshu

	Scintillator	Silicon	Comment
MIP response	7 photons	37 K pairs	Poisson fluctuation for Sc
amplification	SiPM: (2 – 3)e5	1	
Total MIP signal	(1.5 – 2)e6	40 – 60 times lower signal. Compensated by electronics gain	Electronics with lower noises is required for Si. Harder than in tracking detectors because of larger pads and associated input capacitances.
Uniformity	Optimization on-going	Close to 1	
Intrinsic linearity	SiPM saturation, asymptotic value != N pix, sometimes no asymptotic, not understood	Linear	Sc calibration in full dynamic range is required, probably per channel
Calibration	As a function of HV, temperature	Once, "forever"	Per SiPM, to be included to the cost
Stability	Monitoring of HV, T, continuous on-line calibration	Perfect	
Intrinsic xtalk	O(1%), HV dependent, MIP absolute calibration is required	Absent, except at guard ring	Continuous on-line LED calibration is not absolute
FE chip xtalk	Present	Present	Unavoidable with low power electronics, to be simulated
Automation	One strip at a time	256 pixels per sensor at a time	
Cost	1 ILCU/SiPM = 0.44 ILCU/cm2 for 0.5x4.5 strips	3 ILCU / cm2, real offer	Cost of SiPM characterization, strip wrapping, assembly is not included

Cost-conscious options

Small detector: $r_{ECAL} \sim 1400$ mm with silicon only

- + Robustness in ECAL, Simple
- + Cheaper not only in ECAL but also in York
- Performance degraded (both trackers and CALs)
 esp. 1 TeV upgrade should be a problem
- Very similar to SiD: redundancy reduced

Hybrid ECAL (Silicon + Scintillator)

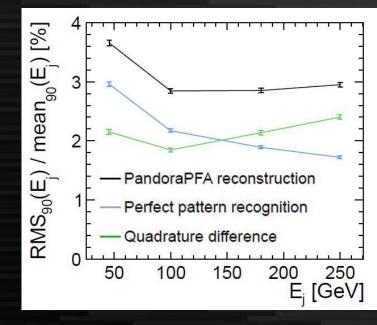
performance → equivalent luminosity → operation cost

- A bit more complexity, careful calibration needed (with AHCAL complexity will be reduced)
- Cheaper only in ECAL: competitive if stray field restriction can be revisited for yoke
- + Performance degradation is very small
- + Large detector \rightarrow more possibility for 1 TeV
- + Variety remained to SiD, more redundancy

Consideration for Calibration

- MIP calibration
- LED calibration (Scintillator only)
 - No specific procedure for hybrid
 - Fluctuation can be seen by Si/Sc ratio
- Electron calibration
 - Compare with momentum in trackers
 - Bhabha monochromatic (125 GeV?) many stats.
 - Bhabha radiative return, WW/ZZ, continuous
 - Si/Sc ratio can be confirmed with various Es
 - Will be studied by MC

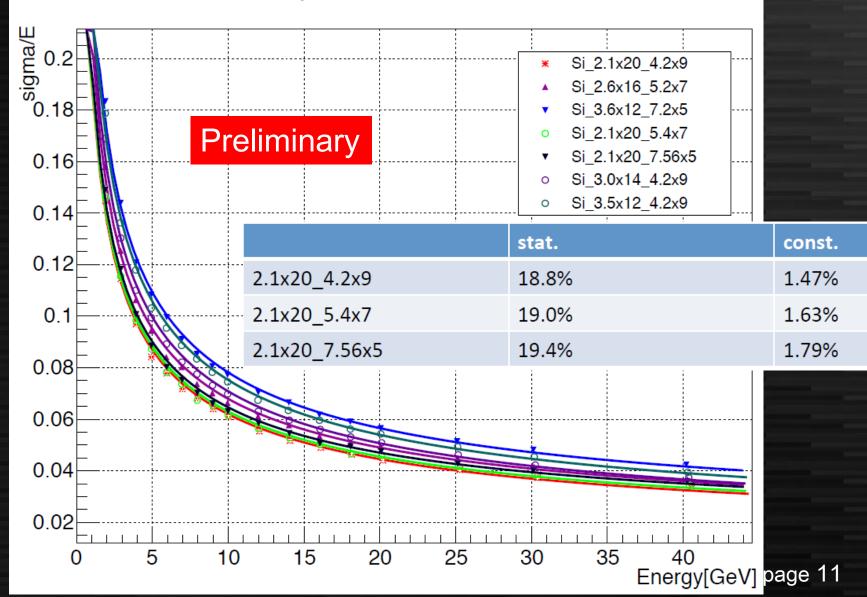
• Pion calibration – using tau (continuous only) Taikan Suehara, LCWS @ Belgrade, 7 Oct. 2014 page 7

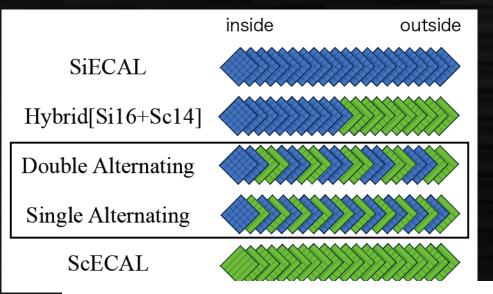

Optimization

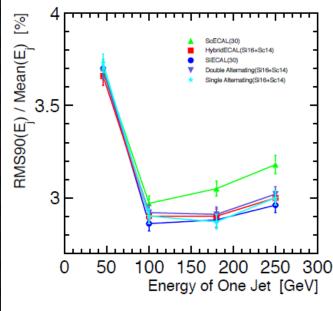
What to optimize

- Thickness(es) of absorber (number of layers)
- Granularity (pixel size)
- How to combine Si/Sc
 - Fraction of Si/Sc
 - Alternate or grouped

N layers & Granularity


- Jet energy resolution is dominated by
 - Intrinsic resolution @ low E (Mainly HCAL)
 - Confusion @ high E
- Other physics


- π_0 reconstruction in tau (Higgs CP etc.) \rightarrow relatively high energy photons
- $-H \rightarrow \gamma \gamma$ (higher energy)
- Photon pointing (BSM study)


A study of # layers

photon_resolution

Hybrid: alternate or grouped?

Essentially the same performance in DBD detector → grouped setup is favored for simplicity More check (tau etc.) needed

RMS90(E_j) / Mean(E_j) [%]

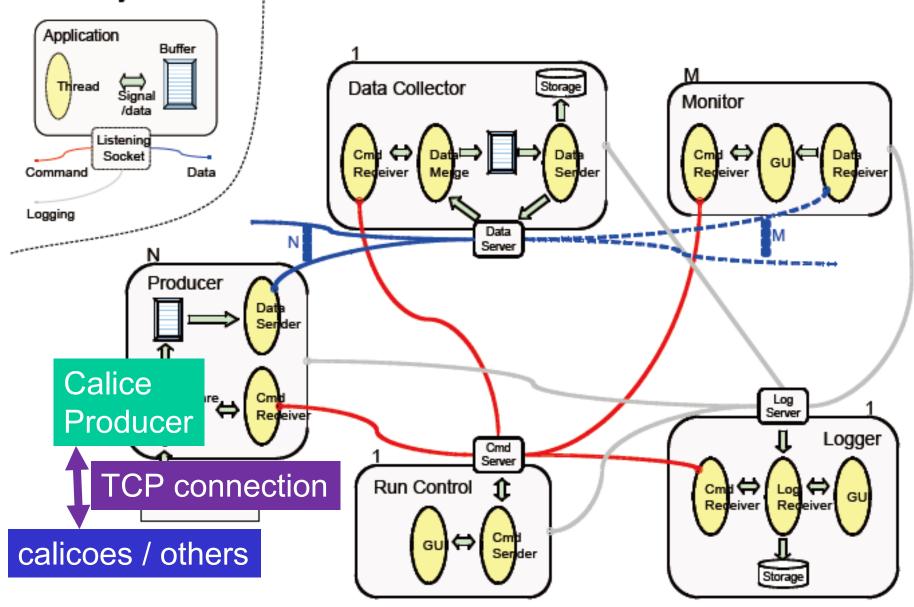
	45GeV	100GeV	180GeV	250GeV
SiECAL	3.70	2.86	2.88	2.96
Hybrid [Si16+Sc14]	3.66	2.90	2.90	3.00
Double	3.69	2.92	2.91	3.02
Single	3.73	2.90	2.87	3.00
ScECAL	3.70	2.97	3.05	3.18

page 12

Optimization - ToDo

- Optimization still in early stage
 → One proposal should be shown in a year
- Plans
 - Hadron energy resolution study
 - Confusion study with different granularity and combination of Si/Sc
 - Tau/ π_0 separation study
 - Test of calibration procedure in MC
 - Goal: cheaper (similar to 1400 mm) detector without significant degradation of performance

DAQ


Combined DAQ - motivation

- "CALICE DAQ" was aimed to unify all efforts involving DAQ of calorimeters to save resource.
 - "ROC" chips \rightarrow successful
 - DIF/LDA board \rightarrow spilt some years ago
 - Software \rightarrow completely independent

At some point, we should unify (again)
 → Hybrid ECAL is a good start point

EUDAQ: a high level structure

Key:

Planned test of combined DAQ

- 2nd TB period at CERN in this Autumn
 26th November to 8th December
 - Mainly AHCAL testbeam with 3 ScECAL layers
- We will put a Si layer in front of Sc layers

- Minimum-combined DAQ will be tested
 - Developing now
 - based on EUDAQ

Current status

ą	ערד 🖏	リケーシ	ョン 場所 シ	ステム	🥑 🥸	🗾 🗖			
			eudaq Run	Contro	l v1.4.0-	alpha0+1	.4~g2e4c	laa	
	ontrol Config:	test							~
ł	Run:	1							
l	Log:								
(GeoID:	0							
Status Run Number: 1 Events Built: 12									
ł	Rate: Triggers: O								
File Bytes: 0 B			Particles:		0				
	TLU Stat	us:				Scalers:			
C,	onnection	าร							
	type	^	name	state	(connection			
ľ	DataColl	ector	CaliceDataC…	OK	1	127.0.0.1:5	6010		
	LogColle			OK		127.0.0.1:5			
	Producer	r	Calice1	OK	1	127.0.0.1:5	6012		

Succeeded to run EUDAQ with CaliceProducer producing dummy data encoded to LCIO object and save to LCIO file using DataCollector

Ready to attach to calicoes/others

oaram) { ." << std::endl;
<pre> << std::endl;</pre>
am.Name() + ")"]

EUDAO Log Collector

Level: From: Search: 0 4-INFO 0 All File Received ^ Sent Level Text From Function 14:38:33.360 14:38:33.359 4-INFO Connection from LogCollector (127.0.0.1:40404) LogCollector euLog.hh:98 OnConnect(const eudag::ConnectionInfo&) 14:38:38.868 14:38:38.867 4-INFO Connection from DataCollector.CaliceDataCollector (127.0.0… LogCollector euLog.hh:98 OnConnect(const eudaq::ConnectionInfo&) 14:38:42.874 14:38:42.873 4-INFO Connection from Producer.Calice1 (127.0.0.1:40408) LogCollector euLog.hh:98 OnConnect(const eudaq::ConnectionInfo&) 14:38:42.974 14:38:42.974 4-INFO Connection from Producer.Calice1 (127.0.0.1:56552) DataCollecto… DataCollecto… OnConnect(const eudag::ConnectionInfo&) 14:38:47.529 14:38:47.528 4-INFO Configuring (test) RunControl.c... Configure(const string&, int) RunControl 14:38:51.213 14:38:51.213 4-INFO Starting Run 1: 1 RunControl RunControl.c... StartRun(const string&) 14:38:52.392 14:38:52.392 4-INFO Preparing for run DataCollecto… DataCollecto… OnPrepareRun(unsigned int)

7 Oct. 2014 page 18

Combined DAQ - ToDo

- General discussion has started at last CALICE technical board
- Agreement at all-CALICE is needed about the framework to be used (at least)
- Gradual approach is the only possibility now
 if we don't have a strong group doing everything
- I hope it well proceed in several years to one "ILC DAQ"

Summary

- We think Hybrid ECAL is a strong option for cost-effective ILD
- We plan to finish a "optimized hybrid" setup in a year
- Combined DAQ is another issue we will try to combine Si/Sc DAQs as a first step to more generic DAQ