R&D status of the Scintillatorstrip based ECAL for the ILD

Oct 2014 @ LCWS14 Belgrade Satoru Uozumi (KNU) For the CALICE collaboration

Scintillator strips
For active & fine granular sensor

Contents

- Introduction of the Scintillator-strip ECAL (ScECAL)
 - Principle & structure
 - Physical & Technological prototypes
- Improvements ongoing
 - Hardware ... optimization of scintillator shape and optical signal readout
 - Software ... hit strip →cluster reconstruction
 Evaluation of Jet Energy Resolution (JER)

Introduction: Why ScECAL?

- First requirement: high granularity to improve jet energy resolution
- Second requirement: chop the calorimeters as small as possible

- ★ Need 5 mm x 5 mm effective segmentation
- → Strip idea Orthogonally aligned strips with Pixelated Photo Detector (PPD) make "virtual cells".

5 x 45 mm $\sim 10^7$ strips Plastic scintillator $\stackrel{\wedge}{\searrow}$ Low cost.

- ★ many established technologies
- ☆ Challenge with new Si-photo sensor
- ☆ Timing resolution < 1 ns</p>

Strip ScECAL in the ILD

"Alveolar" frame structure is made with tungsten absorber.

Two scintillator layers in an alveolar make a sandwich structure with a tungsten absorber.

Strip directions are orthogonal to each other.

Physics & technological prototypes

Physics prototype (BT 2009@FNAL, will be published to NIM)

An array of strips in a layer

Scintillator strip with MPPC and WLS fiber

9 MPPCs on a cable

LED light is distributed to each channel by those fibers

Two layers of Technological prototype

BT@DESY 2013

Ecal behind AHCAL :-)

Tungsten plate in front of ECAL

two-layers HCAL

one HCAL channel corresponds

6x6 ECAL segmentations

Improvements of scintillator & photo-sensor components

Granularity 10mm → 5mm ... hard step

Beta-ray scanning system

- Photon yield (~10p.e.)
 is OK
- Uniformity is almost OK except very close side of the photo-sensor

Any idea to uniformize scitillator-strip response?? → next

Wedge-type readout strip

(Otani group@Tokyo)

Many wedge types are tested

Current best solution (by horizontal beta-ray scan)

- Better response uniformity than baseline design
- High light yield

Wedge-type readout: implementation

New idea: readout by rectangular PPD & tapered scintillator

- Tapered scintillator and PPD with rectangular PPD is a new idea to absorb response non-uniformity
- Simple MC simulation result shows ~7% of non-uniformity
- Asking Hamamatsu to provide the rectangular PPD

PPD (MPPC) development

We were (are) requiring

: lower noise rate, cross-talk, afterpulse

: high Photon Detection Efficiency

: large number of pixels

to Hamamatsu K.K.

Saturation effect is drastically improved!

Development of Reconstruction software

Jet energy resolution @45-250 GeV

SSA makes JER of strip ECAL close to 5 x 5 mm² tile ECAL Difference is only 0.2-0.25%.

Study with more realistic MC simulation is currently underway.

Summary & Plans

- The ScECAL is being established through physics & technological prototypes
- Further improvement of scintillator components
 & PPDs are actively underway
- At this moment, test beam of the wedge-type scintillator is ongoing!
- Cluster reconstruction study shows reasonable performance with Strip Splitting Algorithim.
- Next Goal: determine the detector design in couple of years.

Backup

PPD(MPPC) measured linearity

Physics prototype 2 - 32 GeV electron (at Fermilab)

- Linearity and Resolution

Maximum deviation : 1.6±0.7%

	data	MC
stochastic term	12.8±0.1±0.4	13.26±0.08
constant term	1.0±0.1 ^{+0.5} -1.0	0.66±0.08

Strip Split Algorithm

Energy deposits are redistributed into 5x5 mm² virtual cells referring hits in the nearest layers.

strips in the nearest layers have orthogonal direction.

Left: position accuracy and precision Error bar (RMS) < 1 mm w/ SSA.

Middle: Energy is recovered correctly w/ SSA.

Right: Jet energy resolution is kept w/ SSA.

How to reconstruct with large tile layers

