

Australian Synchrotron

AXXS Overview

- AXXS Australian X-band X-ray Source
- AXXS n. /'æksis/ fig. A central prop, which sustains any system.
- Development plan for the Australian Light Source community:
 - 1. develop the remaining beamlines (space for an additional 6 IDs)
 - 2. upgrade the storage ring lattice to MBA (compact MAX IV magnets)
 - 3. upgrade the injector to a full energy x-band linac (3 GeV)
 - 4. upgrade to additional linac for (X)FEL
- Work supported by management (support letter for Horizon2020)
- Work conducted in nominal 20% research time of ASLS staff
- Work designed to overlap with XbFEL/CLIC design efforts
- Working with x-ray beamline and university researchers to arrive at requirements for the photon beam to drive the accelerator parameters
- participants: 4 physicists (Mark, Rohan, Eugene, David), one PhD (Tessa), some engineering support (four interested)

AXXS Presentations

- Promoting the idea at conferences and meetings to get community feedback and user support
- ACAS Workshop Jan 2014
- IPAC'14 poster Boland et. al.
- LER'14 workshop? Rohan Dowd
- Australian Synchrotron User Meeting 2014?
- XRM'14 <u>www.xrm2014.com</u>
- MEDSI'14 <u>www.medsi2014.org</u>

AXXS Constraints

Site constraint 550 m:

- Same tunnel, energy and source points for storage ring upgrade.
- Time constraints: need to finish building out the remaining beamlines before justifying a new ring or FEL.

1. Injector

- a. Gun
 - i. LCLS baseline design, but final time structure, charge and emittance needed
- b. Bunch compression
 - i. Determine bunch compression requirements based on FEL requirements
 - ii. Do we need harmonic compression?

c. Model

- i. Build a model of injector for tracking purposes, including space charge effects
- ii. Do we need S-band injector?

2. Main Linac

- a. Model
 - i. Build a model of linac for tracking purposes
- b. Beam Quality
 - i. Energy and emittance requirements needed based on meeting both ring and FEL needs.
 - ii. Allowed energy spread, jitter etc.

c. RF

i. RF stations, Synchronisation and stability requirements need to be based on ring and FEL requirements for energy jitter and long phase space.

d. Cavities

- i. breakdown rate at voltages needed.
- ii. Wakefield effecs

3. Ring

- a. Model
 - i. Decide on modelling code
 - ii. Impedance effects chamber design
- b. Injection scheme
 - i. Need incoming beam emittance requirements to feed to linac parameters
 - ii. Numerology eg: Number of bunches, length of bunch train from linac, topup requirements.

c. RF

- i. need RF requirements of beam, including total beam current, Frequency etc.
- ii. Bunch stretcher to avoid instabilities?

4. Radiator

- Undulators
 - Need 3 and 6 GeV radiator parameters to feed to linac/injector requirements
 - What undulator parameters are needed for 1 Angstrom radiation at both 3 GeV and 6 GeV? Is a 3 GeV X-ray FEL even feasible?
 - SASE vs Self Seeding comparisons

_

5. Endstation

a. Need to decide on an end photon flux and energy range – even if upper limit.

AXXS Experimental Plans

- Opportunities for staff and students:
 - SwissFEL commissioning?
 - CERN/CTF3?
 - SLAC ASTA gun facility?
 - SLAC x-band activities?

AXXS Modelling Plans

- move physicists to using ELEGANT code for end-to-end accelerator modelling (presently using MATLAB AT)
- Move to Genesis code FEL modelling (presently using SIMPLEX)

FEEDBACK?

• What do you think?