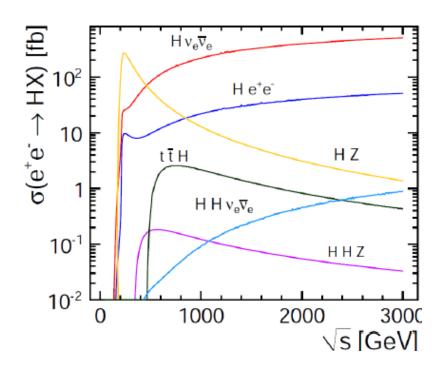


Measurement of H→WW* in HZ at 350 GeV and WW fusion at 1.4 TeV CLIC

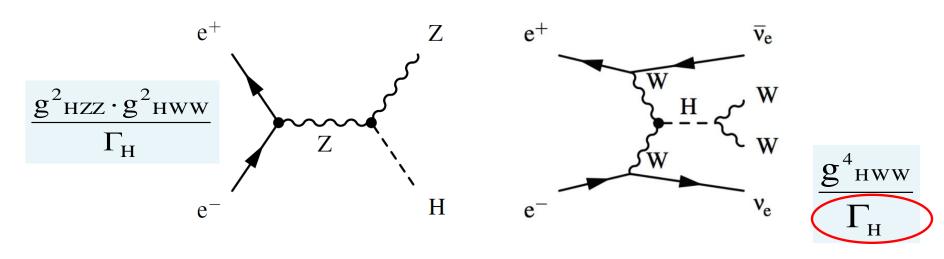
Mark Thomson Mila Pandurović


on behalf of the CLICdp collaboration

Outline

- Motivation for H→WW* decay in CLIC physics program
- Analysis overview
- Simulation and reconstruction
- □ H→WW* at 350 GeV
- □ H→WW* at 1.4 TeV
- Conclusion

Introduction


	350 GeV 1.4 TeV		3TeV	
Luminosity [ab ⁻¹]	0.5	1.5	2.0	
# ZH events	68,000	20,000	11,000	
# Hvv events	26,000	370,000	870,000	

- BF (H→WW)~23%
- □ Considering only fully hadronic H→WW*→qqqq decays
- □ BF ($H \rightarrow WW \rightarrow qqqq$)~10%
- □ Full reconstruction of m_H possible only in these fully hadronic decays

Parallels of studies

□ From ZH: model independent measurement of absolute coupling of the Higgs to Z boson ≤ 0.8 %

s-channel (central jets)

t-channel (forward jets)

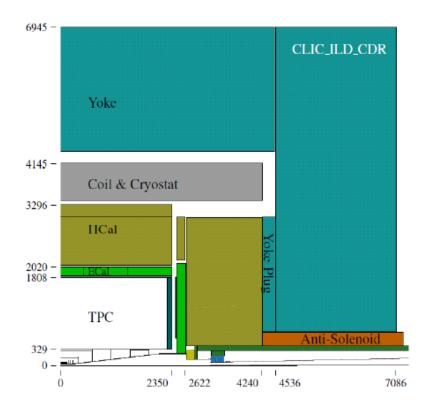
final states

4 jets +missing energy

Backgrounds

Process	X-sec [fb ⁻¹] (350 GeV)	X-sec [fb ⁻¹]; (1.4 TeV)
signal	10.9	27.5
Ηνν	53.4*	216.6**
HZ, other H decays	92.2	/
qq	/	4009.5
qqqq	5847	1328.1
qqll	1704	/
qqlv	5914	/
qqvv	324.6	788.0
qqqqll	/	71.7
qqqqlv	/	115.3
qqqqvv	/	24.7
eγ→qqqqe	/	2891.0
eγ→qqqqv	/	254.3
γγ→qqqqe	/	30212.5

^{*}inclusive sample

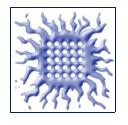

^{**} other Higgs decays

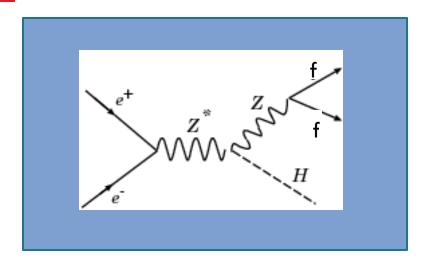
Analysis strategy

Lepton Isolation	=	HZ, Z→II a	at 350GeV	
<u> </u>	_			
Fast Jet	←	k _T exclusive, s		
		Force events in	nto. 4 or 6 jets	
Lcfi Vertexing	<	2 jet hypothesis to apply btagging		
<u> </u>	_			
Preselection	<	Reduction of la	arge cross-section background	
↓				
MV selection	<	BDT ₃₅₀	Likelihood based _{1.4TeV}	
↓	_	$\Lambda = \sqrt{\Omega + 1}$		
Results	($\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S + I}}{S}$	TMinuit: fit to extract x-sec	

Simulation and reconstruction

- Event generation with WHIZARD v.1.95, ISR
- Beam spectrum generated with GUINEAPIG
- Hadronization with PYTHIA
- γγ- hadrons overlaid
- Assuming m_H=126 GeV
- CLIC_ILD detector
- Particle reconstruction and identification
 - ⇒ PandoraPFA

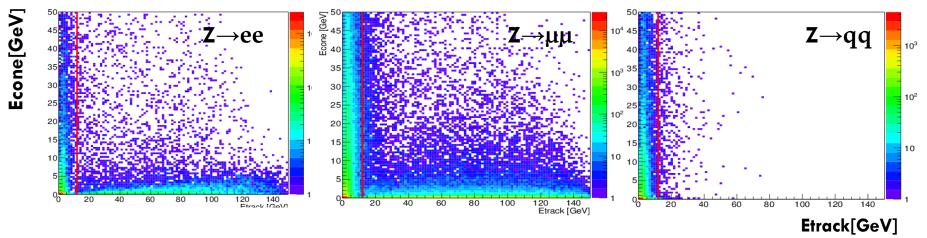



H→WW* at 350 GeV

Mila Pandurović

Vinca Institute of Nuclear sciences, University of Belgrade

Signal signature


Signal evts: BF(H \rightarrow WW \rightarrow qqqq)~10% & BF(Z \rightarrow II)~10% \Rightarrow 1%~700 evts & BF(Z \rightarrow qq)~70% \Rightarrow 7%~5000 evts

- Signature:
 - Semileptonic final state: 4 jets +2 leptons
 - Main background :qqll, qqlv, other Higgs decays
 - Hadronic final state: 6 jets
 - Main background: qqqq, other Higgs decays

First step: Lepton isolation

□ Lepton identification:

- track energy >12 GeV
- \blacksquare energy contained in a cone around the track (cos θ <0.995)
- **■** ECAL/HCAL depositions

Signal - reconstructed lepton pairs event:

85% electron pairs

84% muon pairs

3% false lepton pairs

4 jets + 2 leptons

Grouping 4 jets to form W real

$$\min(\mathbf{d}_{ij}) = \min|\mathbf{M}_{ij} - \mathbf{M}_{w}|$$

6 jets final state

Grouping 6 jets to form W, Z and Higgs

$$\chi^{2} = \frac{\left(M_{ij} - M_{W}\right)^{2}}{\sigma^{2}_{W}} + \frac{\left(M_{kl} - M_{Z}\right)^{2}}{\sigma^{2}_{Z}} + \frac{\left(M_{ijmn} - M_{H}\right)^{2}}{\sigma^{2}_{H}}$$

4 jets +2 l	6 jets		
m _Z > 40 GeV	m _z > 70 GeV		
$100 < E_{vis} < 300 \text{ GeV}$	$E_{vis} > 250 \text{ GeV}$		
$45~\mathrm{GeV} < \mathrm{m_{_{\mathrm{W}}}} < 95~\mathrm{GeV}$			
jetPt > 20 GeV			
	-log(y12)<2.0		
-log(y23)<2.5	-log(y23)<2.6		
-log(y34)<4.0	-log(y34)<3.0		
	-log(y45)<3.2		
	Thrust < 0.9		

After preselection the most difficult backgrounds are used as an input to MV:

4 jet FS

- 1. other H decays, HZ, Z→II
- 2. qqll
- 3. qqlv

BDT variables 4 jets+2l **NPFO** $m_Z m_W m_H m_{W^*}$ Ptjet θ_{e1} $-\log(y23), -\log(y34)$ btag, ctag

6 jet FS

- 1. other H decays, HZ, Z→qq
- 2. qqqq

BDT variables 6 jet FS **NPFO** E_{vis} P_tHiggsJets $-\log(y12)$, $-\log(y23)$, $-\log(y34)$, $-\log(y45)$, $-\log(y56)$, $-\log(y67)$ btag ctag thrust, oblatness, sphericity, acoplanarity

Reduction efficiencies

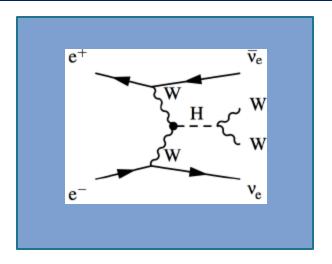
Process	σ [fb]	
H→WW*→qqqq, Z→ee	0.49	
H→WW*→qqqq, Z→μμ	0.49	
H→WW*→qqqq, Z→qq	9.9	
Other H decays	91.8	
qqqq	5847	
qqll	1704	
qqlv	5914	
qqνν	324.6	
Ηνν	53.4	

4 jets			
Epres1	ε=ε _{pres1*} ε _{BDT1}		
83%	30%		
91%	35%		
62%	3.0%		
0.2%	<10-5%		
5.8%	0.0006%		
2.6 %	0.001%		
0.01%	<10-5 %		
0.02%	<10-5%		

6 jets		
Epres2	E=Epres2*EBDT2	
72%	50 %	
35%	0.29%	
18%	0.15%	
0.2%	<0.001%	
0.1%	<10-4%	
0.0001%	<10-5%	
0.0006%	<10-5%	

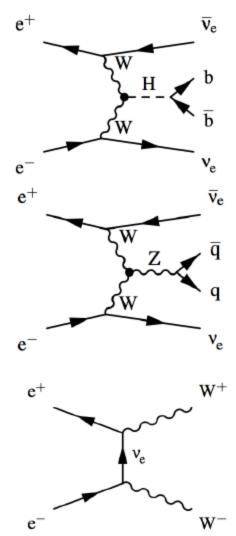
Outlook

- The analysis is constructed
- Refinement of the each analysis step:
 - Lepton isolation: optimize the isolated lepton identification using MC truth matching
 - Jet matching : refine the σ 's of the H,W, Z distributions
 - Include backgrounds with 6 fermions in the final state
 - Preselection: redefine
 - Optimize set of BDT variables


H→**WW*** at **1.4 TeV**

Mark Thomson

University of Cambridge



Signal signature

- Signature:
 - missing p_t
 - 4 jets
 - m_H (4 jets) , m_W (2 jets)
- Preselection targeted at main background:

Hvv other Higgs decays, qqvv, qqqqv

Preselection

Jet Matching ____ grouping 4 jets to form W real

$$\min(d_{ij}) = \min | M_{ij} - M_W |$$

Mass variables: m_H m_W m_{W*}

- □ 70 GeV < m_H <150 GeV
 </p>
- □ 40 GeV < m_W < 95 GeV m_{W^*} < 65 GeV

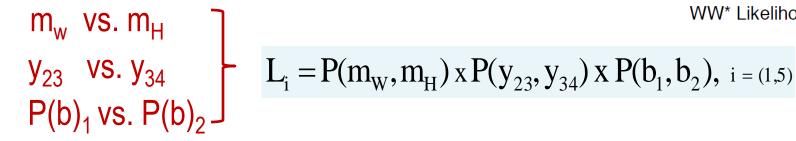
Evis & pt

- 125 GeV < E_{vis} < 600 GeV</p>
- □ p_T > 90 GeV

Jet transitions

- → Force all samples into 2,3,4 jets.
- □ Use the k_T value from which jet transitions from:
 - 2 to 3 jets $-\log_{10} (y_{23}) < 2.75$
 - 3 to 4 jets $-\log_{10}(y_{34}) < 3.5$

b tag


$$P(b)_1, P(b)_2 < 0.95$$

Relative likelihood selection

Constructing likelihood for relevant event types:

> signal H →WW* background H→bb, gg, qqvv, qqqqv

Using 2d distributions (correlations included)

Constructing relative likelihood distributions:

$$\mathcal{L}_{ww*} = \frac{L(WW*)}{L(WW*) + L(bb) + L(gg) + L(qqvv) + L(qqqqv)}$$

Entries 10000

8000

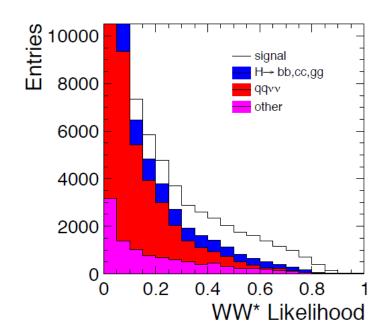
6000

4000

2000

 \mathcal{L}_{cut} =0.35

WW* Likelihood


Reduction efficiencies

Process	σ [fb];	E _{pres}	EL>0.35	N _{L>0.35}
H→WW*→q̄qq̄q	27.5	32.4 %	18.1 %	7518
qqνν	788.0	4.6 %	0.2 %	2225
qqqqlv	115.3	0.1 %	<0.1 %	43
qqqqvv	24.7	0.8 %	0.4 %	130
γe+(γe-)→qqqqv	254.3	1.8 %	0.4 %	1389
Hvv other Higgs decays	216.5			3583
$H\rightarrow WW^*\rightarrow q\bar{q}l\nu$		4.4 %	0.6 %	253
$H \rightarrow b\bar{b}$		1.9 %	0.4 %	774
$H \rightarrow c\overline{c}$		8.1 %	2.1 %	209
$H \rightarrow gg$		19.1 %	7.1 %	1736
$H \rightarrow ZZ$		12.0%	5.0 %	556
H→other		0.7%	0.2 %	55

S/B~1:1

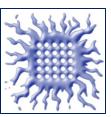
Constrained fit

- □ Signal and background shapes not so different ⇒ need to include constraints
- Branching fractions of Higgs to bb,cc and gg are constrained to the values obtained from the independent measurements at 1.4 TeV

$$\chi^{2} \sim \chi^{2} + \frac{(1-s^{2}_{gg})^{2}}{\sigma^{2}_{gg}} + \frac{(1-s^{2}_{bb})^{2}}{\sigma^{2}_{bb}} + \frac{(1-s^{2}_{cc})^{2}}{\sigma^{2}_{cc}} + \frac{(1-b^{2})^{2}}{\sigma^{2}_{b}}$$

$$\sigma_{_{bb}} = 1.8\%, \ \sigma_{_{cc}} = 2.9\%,$$
 $\sigma_{_{bb}} = 0.3\%, \ \sigma_{_{b}} = 1.0\% \ (assumed)$

$$\frac{\Delta\sigma}{\sigma} = 1.4\%$$


Conclusions

- □ H →WW* decay plays an important role in the CLIC physics program, especially in the determination of the total Higgs decay width.
- □ Analysis of the H → WW* decay from the HZ at 350 GeV constructed and being refined.
- □ The $\sigma(h\nu_e\overline{\nu}_e)$ x BR(H \rightarrow WW*) at the 1.4 TeV CLIC is determined with a statistical precision of 1.4 %.

END

Acknowledgements: P. Roloff, S. Redford, S. Lukic & HEP Group Vinca