Electron Source Update

N. Yamamoto¹,

X.G. Jin², A. Mano¹, and Y. Takeda¹

SR Center, Nagoya University, Japan
 KEK, Japan

Outline

- 1. Required parameters for LC
- 2. Strain-compensated SL
- 3. Experimental Results
- 4. Summary

```
Max. Pol. ( ~ 92%)
QE( ~ 2.2 %) were achieved
```

1. Required Parameters for LC (TDR)

Parameter	Symbol	Value	Units
Electrons per bunch (at gun exit)	N_{-}	3×10^{10}	
Electrons per bunch (at DR injection)	N_{-}	$2 imes 10^{10}$	
Number of bunches	n_b	1312	
Bunch repetition rate	f_b	1.8	MHz
Bunch-train repetition rate	f_{rep}	5	Hz
FW Bunch length at source	Δt	1	ns
Peak current in bunch at source	I_{avg}	3.2	Α
Energy stability	σ_E/E	<5	% rms
Polarisation	P_{e}	80 (min)	%
Photocathode Quantum Efficiency	QE	0.5	%
Drive laser wavelength	λ	790 ± 20 (tunable)	nm
Single-bunch laser energy	u_b	5	μJ

Candidate Design:

GaAs- $GaAs_xP_{(1-x)}$ Strained SL

High polarization (> 90%)

QE(~0.5%)

T. Nakanishi et al., NIM A. 455, 109-112 (2000)

T. Nishitani et al., J. Appl. Phy. **97,** 094907 (2005)

X.G. Jin, et al., APEX, **51**, 108004 (2012)

2. Strain-Compensated SL

To realize high QE and high polarization,

High crystal quality (High Pol.)

Thick thickness SL (High QE)

are essential.

New PC design

Strain-Compensated Superlattice

2-1. Generation of polarized electron

3 step model for electron emission

2-1. Improving the QE

Thick Thickness Super Lattice

2-2. Strain—Compensated SL

 $\varepsilon_{GaAs} = 0.6$ $\varepsilon_{GaAsP} = -0.6$ $L_{GaAs} \cong L_{GaAsP} = 4nm$

Net strain ≈ 0

Strained SL

Strain accumulation and Bad SL structure quality

High Crystal Quality

Higher Electron Polarization
Higher QE (Thickness SL layers)

$$Net \, strain = \ rac{arepsilon_{GaAs} \cdot L_{GaAs} + arepsilon_{GaAsP} \cdot L_{GaAsP}}{L_{GaAs} + L_{GaAsP}}$$
 \mathcal{E} : Strain values for each SL layer

L: Thickness period of each SL layer

2-3. Strain—Compensated SL

GaAs-GaAsP Strain—Compensated SL

$Al_{0.1}Ga_{0.9}As_{0.81}P_{0.19}$ Buffer Layer:

Lattice constant → medium value between GaAs and GaAsP

Band gap energy (1.77eV) → higher than that of SL layers

Ref. X.G. Jin, et al., APEX (2012)

EXPERIMENTAL RESULTS

QE dependence on Exracted Field

In this presentation, we use the scaled QE value at 1 MV/m.

3. Strain-Compensated SL

GaAs-GaAsP Strain-Compensated SL

Ref. X.G. Jin, to be published

3. Strain—Compensated SL(w. new data)

Max. Pol. (~92%)

GaAs-GaAsP Strain—Compensated SL

QE(~ 2.2 %) were achieved

Ref. X.G. Jin, to be published

4. Summary & Future plan

```
We have proposed and developed Strain-Compensated SL PC.
Up to now,
We succeed to fabricate the Strain-Compensated SL PC.
Electron Spin polarization of 92 %
& Quantum Efficiency of 2.2 % were achieved.
```

```
In future,
We are planning
to develop higher performance PC.
to measure and improve the time response of PC
```

