
CMS PFlow
Present Design

Lindsey Gray
13 May, 2014

on behalf of the CMS Cross-POG Forum

Lindsey Gray, FNAL

Quick CMS PFlow Overview

๏ Developed in-house over a number of years

• Started out highly specialized for CMS and very ‘concretely’ implemented for such a
task

• Optimized for working with low to ‘high-ish’ granularity calorimeters

- Simple re-clustering based on calorimeter vs. track resolution

- Originally designed around only 2D calorimeters

• Specialized around working with a dense tracker

- Specialized electron and photon reconstructions to deal with lossy tracks and high conversion
rate

- Nuclear interaction finding, track refitting, a number of other specializations

๏ Huge amount of customization and experience from data taking and high in-time
PU available (and immediate interface to CMS Geometry)

• Needed to be made more flexible to deal with upgrade possibilities and improved
clustering techniques or more information

• For detector-specific clustering and topological linking we have done this

- Reclustering and particle ID parts presently under re-design

• Very curious to figure out how to correctly exploit Pandora’s algorithms in CMS given
this redesign. Likewise lessons from CMS should be more conducive to porting or use
in some other framework.

2

Lindsey Gray, FNAL 4

PF Calorimeter clustering
● PF clustering has been rewritten to be modular

● Additional algorithms are already implemented in
addition to the standard algorithm we use now:

● 2D clustering around local maxima with shared hits

 seed
shared hit

● Ideal algorithm if no depth
segmentation and high
occupancy

● Local maxima seed clusters that
share hits based on
~exp[distance2/2shower radius2]

● Clusters evolve iteratively

PFRechits & Clusters
๏ PFRecHits are basic rechits (energy, time,flags)

with embedded geometry and topology

• Allows PFRecHit to be independent of
underlying detector

• Topological associations only need to know
nearest neighbors at each active calorimeter
cell

• With this in hand clustering becomes an
abstract problem

๏ PFClusters are built by a generic algorithm for
2D calorimeters that recovers shower
substructure through energy sharing

• Expose shower substructure by allowing any
local maximum in energy to be a cluster seed

• Use a gaussian profile to then share the rechits
between the seeds

• Recalculate position with addition energy from
shared rechits, iterate until cluster positions are
stable

3

PFRecHit Producer
Barrel

RecHits

Endcap
RecHits PFRecHits

(M. Bachtis)

Navigation Plugin

RecHit builder
plugin

RecHit builder
plugin

Select & Clean Plugin

Select & Clean Plugin

(C. Bernet, P. Janot)

1

2

3

PF Clusters

repeat this sharing for all
cells in topo cluster (yellow)

Lindsey Gray, FNAL

 PFClusters Design
๏ For Run One, PFRechitProducer and

PFClusterProducer were very monolithic

• Only one detector to cluster

• Now we have three detectors to deal with!

- and radically different calorimeters to cluster in
some scenarios

๏ In order to be able to adapt to the future it
was necessary to reorganize these valuable
tools

• Create abstractions to remove underlying
detector configuration dependencies

• Clustering methodologies, rechit cleaning,
practically everything except for the gross
anatomy of the algorithms are now modularized
and easily replaceable with minimal overhead

• New calorimeters are easy to add in this
reworked framework for particle flow

• Allows developers to focus on bigger picture
while still maintaining fine grained control!

4

PFClusterProducer

PFClusters

PFRecHits

Cleaning Plugins

Initial Clustering Plugin

RBX/HPD Cleaning for HCAL
Spike Cleaning for ECAL/HF

Right now, standard
recursive nearest-
neighbor algorithm

Re-Clustering Plugin Presently sub-cluster
position fitting

Position Recalculation

Energy Correction

Only used by ECAL
so far

Only used by ECAL
so far

Seeding Plugin
Currently the usual local-

max seeding

(L. Gray)

Lindsey Gray, FNAL

PFBlockAlgo
๏ The PFBlock algorithm makes Particle Flow

possible

• It organizes tracks and clusters into sets that are
topologically connected

• Significantly reduces time taken to find what
objects are closest together

๏ This goal achieved by defining detector objects
to ‘import’ and ‘links’ that define what objects
can be neighbors and distance between them

• Create a unique element list otherwise linking is
ambiguous

• Form the block by finding all elements related by
neighbors to the current front of the element list

• Check for extra neighbors and then start the
process again for a new block

๏ This is the very first determination of the gross
energy flow in the event

• Elements in different blocks cannot be linked to
each other

5

Build Unique Element List
(a.k.a. ‘block import’)

ECALHCAL HO HF GsfTracks Gen. Tracks Conv’s

Seed and fill PFBlocks

(a.k.a. ‘linking’)

(neighbours of neighbours of...)

Re-link PFBlocks
(check for extra links between elements!)

Pre-process ECAL/HCAL/TRACK/PS
with space partitioning algorithm.

(a.k.a. ‘KDTreeAlgo’)

(C. Bernet, P. Janot, et al.)

Lindsey Gray, FNAL

PFBlockAlgo Design
๏ In a similar fashion and for similar reasons

we modularized the PFBlock producer

• New block producer behavior defined
entirely by python

• Importers are clearly exposed to the user

- New ones can be easily written and integrated
to PFlow

• Similarly various link types are now displayed
as an action matrix

- Each linker says exactly what kind of elements
it connects

• Intuitive way to configure the behavior of the
first layer of particle flow

๏ New linking to account for new detector
types is easy to write and introduce

• Again minimal overhead and allows a
contributor keep their mind close to the
problem at hand

6

Importer Plugins

Linker Plugins

KDTree Plugins

Linker

Pre-linker

Linker (now as a loop)

Instead of switch, linkers stored
in vector of pointers.

Maintain constant-time lookup.
Prelink definition attached to
link test, reduces cache churn.

Relinker Output

(L. Gray)

