$h \rightarrow \tau^+ \tau^-$ BR Study kT clustering & tau finder for 500 GeV $\nu \bar{\nu} h$

> Shin-ichi Kawada Hiroshima University

kT clustering & tau finder

- I need proper R-value of kT clustering to get good performance.
- Now using R = 1.0 case at 500 GeV $\nu \bar{\nu} h$, but not optimized.
- Besides, I did not checked the matching of the tau finder.
- I checked the tau finder performance as the function of R-value.

kT clustering

# of PFOs	come from Higgs	come from not Higgs			
All PFO	96641	153216			
R = 0.5	89190 (92.3 %)	7824 (5.11 %)			
R = 0.6	90011 (93.1 %)	10702 (6.98 %)			
R = 0.7	90651 (93.8 %)	13851 (9.04 %)			
R = 0.8	91180 (94.3 %)	17313 (11.3 %)			
R = 0.9	91590 (94.8 %)	21260 (13.9 %)			
R = 1.0	92033 (95.2 %)	25428 (16.5 %)			
R = 1.1	92368 (95.6 %)	29833 (19.5 %)			
R = 1.2	92700 (95.9 %)	34473 (22.5 %)			
R = 1.3	92999 (96.2 %)	39544 (25.8 %)			
R = 1.4	93286 (96.5 %)	44776 (29.2 %)			
R = 1.5	93562 (96.8 %)	50256 (32.8 %)			

now using

Check the tau finder performance

- I updated my code to get the MC information of the PFOs in the reconstructed tau candidate, and get the parent of that particles.
- (Parent == Higgs) is OK. (Parent != Higgs) is NOT OK, it means that the overlay PFOs are combined in the reconstructed tau candidate.
- I combined most energetic τ^+ and τ^- as the Higgs boson candidate, so I checked the matching in the energetic tau candidates, as the function of R-value.

Matching results

OK = come from Higgs not = not come from Higgs

# of PFOs	R = 0.5		R = 0.6		R = 0.7		R = 0.8		R = 0.9	
	OK	not	ОК	not	OK	not	OK	not	ОК	not
$ au^-$ charged	18296	501	18278	654	18245	753	18221	863	18195	992
$ au^-$ neutral	20935	1099	21031	1415	21078	1645	21089	1897	21075	2082
$ au^+$ charged	18449	479	18418	616	18387	714	18332	823	18290	906
$ au^+$ neutral	20989	1210	21073	1538	21093	1791	21080	2011	21078	2183

# of PFOs	R = 1.0		R = 1.1		R = 1.2		R = 1.3		R = 1.4	
	OK	not	ОК	not	OK	not	ОК	not	ОК	not
$ au^-$ charged	18164	1083	18098	1157	17980	1213	17861	1257	17742	1256
$ au^-$ neutral	21066	2258	21020	2415	20926	2506	20786	2633	20687	2687
$ au^+$ charged	18257	978	18172	1044	18072	1083	17972	1109	17870	1131
$ au^+$ neutral	21063	2337	20998	2448	20938	2536	20843	2644	20719	2711

Matching results as the function of R-value

- For charged PFOs: 3 8% of charged PFOs are mis-combined
- For neutral PFOs: 5 13% of neutral PFOs are mis-combined
- Now using R = 1.0: ~5% charged PFOs and ~10% neutral PFOs are mis-combined to tau candidates.
- If I use R = 0.5, ~3% charged PFOs and ~5% neutral PFOs are mis-combined. It looks better than R = 1.0.

Summary & Plans

- I checked the tau finder performance as the function of R-value.
- R = 1.0 case: ~5% charged PFOs and ~10% neutral PFOs are mis-combined.
- Performance of R = 0.5 looks better than R = 1.0... ---> Now I'm analyzing R = 0.5 case.

 JPS Meeting in next September @ Saga: not registered yet, but I will register and give a talk