ILC SRF Materials R&D at FNAL

C. Antoine, P. Bauer, C. Boffo, C. Cooper

Universities:

Applied Superconductivity Center University of Wisconsin

Michigan State University

Northwestern University

ILC Materials&Processing R&D

Understanding SRF physics

- High Field dissipation
- Quench
- Surface resistance
- Thermal behavior

- Hot spots
- Surface nano-analysis
- Magneto-optics
- Thermal conductance
- Kapitza resistance

Processing (EP!?)

arge scale Nb supplying

- Specification
- Reproducibility
- Cost issues

- EP Mechanism
 - Correct I/V parameters
 - Impurities
 - Ageing
- Modeling (hydrodynamics) Cost issues
- Pre-processing (tumbling)
- Post-processing (rinsing)
- Specification
- Reproducibility

- Mechanical properties
- Recrystallization
- Texture/Orientation issues
- Forming process
- Fine grain/Large grain

Materials R&D: SRF Physics

Fermilab & LCRD support a regional SRF Materials R&D program with regular meetings – last collaboration meeting in March 17th 2006

- □ Applied Superconductivity Center
 Magnetic and Transport Studies, Theory
- ☐ Michigan State University

 Thermal and Mechanical Studies

 TIG Welding
- □ Northwestern University
 Nano-chemistry

Collaboration Meetings

"Midwestern SRF Materials Group": Initially: Fnal and ASC/UW Kick-off meeting April 11th 2003, NU and MSU joined later □Nov 21st 2003 – University of Wisconsin □April 30th 2004 - Fermilab □Nov 23rd 2004 – University of Wisconsin □May 4th 2005 - Fermilab □March 17th 2006 – Michigan State □?? – Northwestern University?

Hot Spot Model – A. Gurevich

Hot Spots

Hot spots "ignite" in Q-drop regime!

What are those hot spots?

G. Ciovati - JLab

Chasing Hot Spots

Micro- & macro-scale

□Local variations in SC properties?

Magneto-optics and Transport / ASC-UW

□Defects, Impurities?

Local nano-chemistry – 3DAP / NU

☐Thermal Properties?

Kappa and Kapitza - MSU

Magnetic investigation of Nb

Discovered inhomogeneities in magnetic properties – weak grain boundaries?

Nonuniformities
and flux
penetration
gets worse
along the cavity
production
route!

Weak Grain Boundaries?

Current blocking effect?

Manifestation of reduced pinning?

Transport Experiment

Measure flux flow resistance through GB as function of external field; Saturation-field H_0 gives information on de-pairing J_d of sc

GB! $\boldsymbol{H}_0 = \frac{\boldsymbol{\phi}_0}{4\pi^2 \boldsymbol{l}^2} \quad \boldsymbol{l} = \frac{\boldsymbol{c}\,\boldsymbol{\phi}_0}{16\pi^2 \lambda^2 \boldsymbol{J}_d}$ saturation field vortex size

S.Hawn, A. Gurevich

Nb Nanochemistry w. 3DAP

D. Seidman, K. Yoon Northwestern University

Atomic resolution!

Nb Nanochemistry w. 3DAP

D. Seidman, K. Yoon Northwestern University C. Antoine, Fermilab

Tip prepared by D. Hicks and C. Antoine at Fermilab

3DAP Results

O levels in surface and bulk:

Oxygen concentration doesn't drop sharply – 10at% levels in first 20-30 nm of bulk!

MSU Kapitza Conductance Study

Potential for a 10-fold improvement in Kapitza conductance!

A. Aizaz, T. Grimm

Nb Mechanical Property Studies

A. Aizas, D.
Baars, T. Bieler,
T. Grimm, H.
Jiang

Recrystallization of large grain Nb welds:

TIG Welding Study

High purity TIG Welding of Nb TIG process (tip, current,..etc) was defined; First samples were welded in "glovebox" flooded with commercial Ar and an improvised hot Ti filament; New Weldchamber in preparation

S. Bricker / D. Pendell - MSU

Achievements - University Programs

☐ UW discovery of in-homogeneities in superconducting properties in high purity Nb for SRF □Advances in SRF theory – "Hot Spot Model", Non-Linear BCS Resistance, Thin Film Idea □Nb nano-chemistry at unprecedented resolution - promising big results very soon! □Investigation of welded large and single crystals

Others ideas ...?

RF microscopy

S. Anlage - UM

Superconducting gap measurement (Photoemission) Fermi Level @ 10K @ 5K => SC Δ 261 262 Λ @ 5K + BAKING! year property of more than the second of the 1000

C. Antoine - CEA

Nb Production

- Specification
- Reproducibility
- Cost issues
- ☐ Specifications: tend to converge
 - - Improvements to gain in reproducibility?
- ☐ Reproducibility: not yet achieved from batch to batch

Need to study recrystallization vs deformation, time, temp, **&** RRR!

Suppliers: QA/ instrumentation of the furnaces

What is the favorable texture?

(forming/mechanical resistance)

☐ Same work with large grain/monocrystals

- Mechanical properties
- Recrystallization
- Texture/Orientation issues
- Forming process
- Fine grain/Large grain

Thermal conductivity

Data on ILC Nb

Ahmad Aizaz & Terry Grimm MSU

Microstructure & Mechanical Propert.

Recent Forming Problems: Improved Microstructure through Heat Treatment T. Bieler, H. Jiang – MSU

Surface Topology

Surface Roughness and Chemistry: Example: Study of different cutting techniques by C. Cooper / Fnal

EDM Cut Surface SEM

Milled Surface Topology

Vision for the near-to-mid term

- ☐ Continue w. Midwestern Group Activity;
- ☐ Possibly expand with DOE AARD Funds;
- ☐ Chasing Hot Spots
- ☐ Chemistry of the first 40 nm
- ☐ Macro-properties (Kappa, Kapitza,..)
- ☐ Microstructure small & large grain

#Fermilab

