

# A pixel TPC for the Linear Collider: Towards a demonstrator module

#### **Michael Lupberger**

University of Bonn

GEFÖRDERT VOM



Bundesministerium 'ür Bildung und Forschung



LCTPC Collaboration Meeting DESY 30.06.2014







- LCTPC-pixel collaboration
- Timepix Chip
- 2013 Testbeam and data analysis
- New demonstrator module
- Summary



### LCTPC-pixel collaboration



- R&D towards a pixel-TPC: MPGD + pixel readout
- Groups:
  - NIKHEF: Module construction
  - University of Kiew: Simulation
  - LAL Orsay: Simulation
  - CEA Saclay / DESY: Data analysis
  - Uni Bonn: Module construction, readout system, data analysis
  - Uni Siegen: Data analysis
- Goal: build a demonstator module for a pixel-TPC



### **Timepix chip**

- Universal readout chip
- Properties:
  - active surface: 1.4 x 1.4 cm<sup>2</sup>
  - pixel size 55 x 55 μm<sup>2</sup>
  - 256 x 256 pixel array
  - 14 bit counter in each pixel (ToA or ToT)
  - Noise threshold ~500e<sup>-</sup> (ENC ≈  $90e^{-}$ )





Michael Lupberger LCTPC Collaboration Meeting 2014











#### Setup at DESY





#### **Reconstructed tracks**





#### **<u><b>LP module: next steps**</u>

~100 chip module (cover 50% of area, 6 mio. channels)

- Project: test a 32 InGrid board in September/October
  - Similar design as 8 InGrid module
  - Expandable to 96 InGrids
- Mechanical design (Bachelor student: Johann Tomtschak)
  - CAD drawings in SolidWorks
  - Construction of light LP frame in workshop
  - Construction of chip support structure in workshop
  - Use water cooling





### LP module: next steps

- Powering (Bachelor student: Katrin Kohl)
  - Was already critical for a single octoboard
  - Low voltage supply for 4/12 octoboards?
  - High voltage supply

~100 chip module

- Field distortions between chips (Katrin Kohl)
  - Simulation, implementation and measurements with "road-like strips"
- PCB layout (Jochen Kaminski)
  - Depends on powering
  - Space is limited
  - Need many HDMI cables

InGrid bonding, testing, quality control, calibration<sup>iniversitätbon</sup>

#### **Field distortions**













#### Scalable Readout System (RD51, CERN)





#### Chain: Chip – Adapter card+FEC – Computer







JTAG p-ogram

SRS FEC with Virtex 5 FPGA

Timepix chip on carrier

Intermediate board (can carry 8 daisy-chained chips)

Ethernet to PC

Adapter card Type A







### Readout system status

- FEC5 based readout worked very well at testbeam
  - Virtex5 FPGA, DDR2 RAM
  - Readout of one octoboard
  - Updates of firmware
  - New hardware e.g. HDMI cables, intermediate boards
- For 96 chip module:
  - 4 octoboards / FEC
  - 3 FECs
- FEC6
  - Virtex6 FPGA, large internal memory
  - 3 FEC6 arrived in Bonn in April
  - Code migration started
  - Design of LP module shaped intermediate board for 12 octoboards started









Pixel-TPC project advances very well

- Successful testbeam 2013
- Data analysis ongoing
- Development of readout system
- Design of a 32 / 96 chip module



=> Demonstrator for a pixel-TPC at the end of this year



Timepix 3, Ceramic grid

#### **Collaborators**

LCTPC-pixel:



- CEA Saclay: Andrii Chaus, David Attié, Maxim Titov, Paul Colas
- DESY: Felix Müller, Ralf Diener, Ties Behnke
- NIKHEF: Fred Hartjes, Harry van der Graaf, Jan Timmermans, Rolf Schön, Wilko Koppert
- Uni Bonn: Alexander Deisting, Christoph Krieger, Jochen Kaminski, Johann Tomtschak, Kathrin Kohl, Klaus Desch, Michael Lupberger, Robert Menzen, Thorsten Krautscheid, Yevgen Bilevich,
- LAL Orsay/Uni Kiew: Sergey Barsuk, Oleg Bezshyyko, Oleksiy Fedorchuk
- Uni Siegen: Amir Shirazi, Ivor Fleck

Special thanks to: Fraunhofer IZM, LCTPC Collaboration, DESY testbeam support



19 END



#### Scalable Readout System (RD51, CERN)





#### Chain: Chip – Adapter card+FEC – Computer





Adapter card Type A



JTAG p-ogram

SRS FEC with Virtex 5 FPGA

Timepix chip on carrier

Intermediate board (can carry 8 daisy-chained chips)

Ethernet to PC







universität**bonn** 



March/April 2013: 2 LCTPC octoboard modules

- Different amplification structures: GEM / InGrid
- Test of readout system
- Readout rate: 2.5 Hz; 40MHz clock
- Electron beam of up to 6 GeV
- Gas: Ar:CF4:iC4H10 (95:3:2) = T2K gas
- ~ 2 Mio. frames recorded, including B = 1 T
- Extensive testbeam program
- Preliminary data analysis in MarlinTPC Robert Menzen



### Preliminary Analysis: Cuts



Dataset for first analysis:

z-scan, B=0 T,  $E_{Drift}$  = 230 V/cm (D<sub>T</sub> = 311 µm/√cm)

 $\Rightarrow$  tracks parallel to x-axis

Cuts:

- Only hits within shutter window
- More than 200 hits per track



### **Preliminary Analysis: Cuts**



Dataset for first analysis:

z-scan, B=0 T,  $E_{Drift}$  = 230 V/cm (D<sub>T</sub> = 311 µm/ $\checkmark$ cm)

 $\Rightarrow$  tracks parallel to x-axis

Cuts:

- Only hits within shutter window
- More than 200 hits per track
- Only single track events





### **Preliminary Analysis: Cuts**



Dataset for first analysis:

z-scan, B=0 T, E<sub>Drift</sub> = 230 V/cm (D<sub>T</sub> = 311  $\mu$ m/ $\checkmark$ cm)

 $\Rightarrow$  tracks parallel to x-axis

Cuts:

- Only hits within shutter window
- More than 200 hits per track
- Only single track events

- Entries 400 Preliminary 350 300 250 200 Chip 150 100 50 0-50 -30 -40 -20 -10 0 10 20 30 40  $d_0$  in mm
- Tracks centred on lower chip row (z dependent)













### **Transverse spatial resolution**





Fit function  $f(x) = \sqrt{P0^2 + P1^2 \cdot z}$ 

P0: intrinsic x-y resolution 327  $\mu$ m dominated by field distortions P1 = 310  $\mu$ m/ $\vee$ cm: diffusion in T2K for E = 230 V









#### Data analysis

Martin Rogowski: A new tracking algorithm



Reinvestigate field distortions of Roberts analysis



Algorithm from Forward Tracking Detector for ILD



## 2013 testbeam

Analysis



21

Physics:

- Reconstruct tracks, identify characteristics
- Study detector properties
- Study point/track resolution
- Compare to traditional pad readout

