

Cellular Automaton Tracking for VXD based on Mini – Vectors

Y. Voutsinas

ILD optimisation, 04/06/14

Outline

- Cellular automaton based on mini vectors
 - Cellular automaton tools
 - Mini vectors
 - Performance
 - Robustness
- Outlook

Motivations

- Mainly the standalone VXD tracking
 - > Track finding in the low P_{T} range (~ 100 MeV)
- Cellular automaton core tools already included in ilcsoft used for FTD tracking
 - Can we use them for another subdetector?
- Added values of mini vectors
 - Exploitation of the double sided structure of the VXD ladders
 - > Are the MVs beneficial or detrimental for pat. rec?
- Study VXD configuration sensor specifications
 - > Speed, robustness ...

Detector Configuration

- Detector studied through these slides
 - DBD VXD, equipped with fast CMOS sensors

	DBD VXD		Fast CMOS VXD	
layer	$\sigma_{_{\text{spatial}}}(\mu m)$	σ _{time} (μs)	$\sigma_{_{spatial}}(\mu m)$	σ _{time} (μs)
L1	3/6	50 / 10	3/6	50 / 2
L2	4	100	4 / 10	100 / 7
L3	4	100	4 / 10	100 / 7

- > Overall number of VXD hits to deal with in pat. rec
 - > DBD VXD: 160k
 - Fast CMOS VXD: 120k

Cellular Automaton Tools

- <u>Core tools are already there for the FTD tracking</u>
- Very flexible
 - Appealing to be used for pattern recognition in other detectors
 - > See R. Glattauer Diploma thesis

http://www.hephy.at/fileadmin/user_upload/Publikationen/DiplomaThesis.pdf

- VXD & mini vectors related definitions of KiTrack abstract classes have been created in KiTrackMarlin
- Set of criteria for mini vector connections have been defined in KiTrack
- Minor modifications in core tools
 - Pattern recognition is quite detector specific...

ILD optimisation, 04/06/14

Mini – Vector Tracking

- Mini vector formation
 - 1) Hits in adjacent layers (dist 2mm) with max distance 5mm
 - 2) Or $\delta\theta$ between hits in adjacent layers (cut can go up to 0.1^o)
- Divide VXD into θ , ϕ sectors
 - Try to connect mini vectors in neighbouring sectors
- Cellular automaton criteria
 - > ϕ , θ pointing direction of the mini vectors
 - No zig-zag (2 MV segments)
- ttbar sample, pair bkg included for $\sqrt{s} = 500 \text{GeV}$
- Fast CMOS vertex detector

104		h1
^{10.} E	Entries	14187
E N	Mean	0.0001581
	RMS	0.06567
10 ³ E		
E		
-		
F (1)		
10 ² =		
E ji		
F J Lu		
10 - 11		
E _« /Ս ՆՆՈ)		
է չորքվ Առև չ		
	n	
-1.5 -1 -0.5 0 0.5 1	1.	5
	δΑ (α	dea)

ttbar, $\delta\theta$ of hits belonging to a MV based on MC info

	Dist < 5mm	δΘ <0.5 [°]	δΘ <0.3 ⁰	δΘ <0.1 ⁰
VXD hits	10 ⁵	10 ⁵	10 ⁵	10 ⁵
MiniVectors	3x10⁵	10 ⁵	6x10 ⁴	2x10 ⁴
Connections	O(10 ⁵)	O(10 ⁵)	< 10 ⁵	~ 10 ⁴
Raw tracks	O(10 ⁶)	O(10 ⁶)	O(10 ⁵)	< 10 ⁵
Time	~10min	~ 2min	~ 1min	~ 20 s

Comparison with FPCCD Tracking*

- FPCCD tracking
 - Most performant algorithm for standalone Silicon tracking in ILD
- Examined track sample
 - All charged tracks inside the geometrical acceptance of the VXD
- Definition of found track
 - > 75% purity, ≥ 4 hits
- "Ghost" tracks
 - > all tracks which does not correspond to a found MC particle
 - Could be pair bkg particles or combinatorics or misreconstructed tracks

Comparison with FPCCD Tracking II

Sample: ttbar, \sqrt{s} = 500 GeV, fast CMOS VXD, pair bkg overlayed, 120 events

Search for the lost tracks

- Efficiency ~ 99% for $P_{T} > 1 \text{ GeV}$
- Why we can't find this ~1% of tracks?
- Typical case of lost track, MC particle $P_T = 21$ GeV
- Particle doesn't create hits to all layers, in L4 and L6 crosses the insensitive electronic band
 - Can form mini vectors only in inner layer
 - > Need > 1 mini vector to reconstruct a track...
- Marginal effect in tracking but...
- ... what about alignment?

Light Higgsinos Study (Hale Sert)

- Investigating SUSY scenario with light Higgsinos
- Very soft fermions in the final state
 - Ideal sample to test the CA mini vector algorithm
 - > Replace the std Silicon tracking with the new algorithm
 - No pair bkg overlayed
 - Comparing the <u>overall</u> tracking performance for each Si tracking algorithm

 $\mathsf{P}_{_{\rm T}}$ distribution of stable and charged MC particles (cos θ < 0.9397)

Adding pair bkg

"Bad" Tracks

- Higgsino + pair bkg
- Events: 512
- Silicon tracks
- Marlin tracks
 - ~ 28 "bad" tracks / event

Where do they come from?

- Only pair bkg file
- Events: 60
- ~ 30 / evt with χ^2 / ndf < 10

Robustness

- Mini vector tracking can be sensitive to missing hits
 - What will happen if we don't have 100 % sensor detection efficiency?
 - Track finding eff. as a function of hit detection eff.
 - Studied values for hit detection efficiencies for the sensors: 99.5%, 99%
- Robustness vs combinatorics
- Up to which hit density the C.A. Algorithm can cope with?
- Is it performant for the DBD assumed sensors specifications (time resolution)
- One should account for the uncertainties in pair bkg simulations
- Also: changes in ILD configuration may have a significant impact on pair bkg hit densities
 - Anti DID field, beamcal design ...

Robustness vs Missing Hits

Robustness

- Mini vector tracking can be sensitive to missing hits
 - > What will happen if we don't have 100 % sensor detection efficiency?
 - Track finding eff. as a function of hit detection eff.
 - Studied values for hit detection efficiencies for the sensors: 99.5%, 99%

- Robustness vs combinatorics
- Up to which hit density the C.A. Algorithm can cope with?
- Is it performant for the DBD assumed sensors specifications (time resolution)
- One should account for the uncertainties in pair bkg simulations
- One should account for hits due to electronic noise (but probably marginal effect...)
- Also: changes in ILD configuration may have a significant impact on pair bkg hit densities
 - Anti DID field, BeamCal design ...

Performance for Higher Hit Densities

- Severely compromised performance (CPU and efficiency) observed for DBD VXD option
 - FPCCD tracking performs better
- Why CA mini vector is suffering?
 - For each MV, too many candidate MV to connect with in neighboring sectors
- Approach
 - Smarter selection of neighboring sectors
 - > MV are small tracks can point to the candidate sector
 - Fully exploit the MV concept
 - Work on going...

Summary & Outlook

- The results indicate that mini vectors improve significantly the tracking in the presence of beam bkg
- For a fast VXD
 - > CA MV tracking shows very good perf. In terms of efficiency and CPU time
 - But too many "bad" tracks
 - Are they "bad" tracks (combinatorics) or real pair bkg tracks?
- For slower detectors / higher hit densities
 - Smarter sector connection (on going)
- Integration to overall tracking sw
 - > CA MV shows promising performance as a part of the overall tracking
 - > Improves significantly the efficiency on low P_{T} tracks
 - Few technical issues need to be resolved