A simulation of track distortion in GEM module

Bo LI

Center for High Energy Physics, Tsinghua Univ.

June 19, 2014

Outline

1 Introduction

2 Simulation tools

3 Electric field

Distortion of GEM

Outline

1 Introduction

- 2 Simulation tools
- 3 Electric field
- 4 Distortion of GEM

Introduction

- Track distortion near the GEM gap was observed in both beam test and laser test.
- We try to explain the distortion by simulation.

GEM module

図 5.2.3 中心の GEM の電極境界 とパッドの関係図

図 5.2.4 左右の GEM の電極境界と パッドの関係図

Bo LI (TUHEP)

Position of pad rows with respect to gaps

Table 1: The relative position of pad centers and gap centers

Row	Distance
6	-0.435
7	0.1
13	-0.265
14	0.265
20	-0.1
21	0.435

Outline

Introduction

- 2 Simulation tools
 - 3 Electric field
- 4 Distortion of GEM

Simulation tools

- Gmsh: create detector geometry and mesh.
- Elmer: electric field calculation with FEM.
- Garfield++: MC simulation software for gaseous detector.

Outline

1 Introduction

2 Simulation tools

3 Electric field

4 Distortion of GEM

Electric field of old GEM (E_x)

Electric field of old GEM (E_z)

Electric field of new GEM (E_x)

Electric field of new GEM (E_z)

Drift lines

Outline

1 Introduction

- 2 Simulation tools
- 3 Electric field
- 4 Distortion of GEM

Electron endpoints (B=0 T)

Angle: 20°

Distortion calculation

 $\bar{y} = -0.153 \text{ cm}, y_{\text{exp}} = -0.265 \times \tan(20^{\circ}) = -0.096 \text{ cm}$ distortion = $\bar{y} - y_{\text{exp}} = -0.056 \text{ cm} = 560 \text{ }\mu\text{m}$

Distortion calculation

 $\bar{y} = -0.0041 \text{ cm}, y_{\exp} = 0. \times \tan(20^{\circ}) = 0. \text{ cm}$ distortion = $\bar{y} - y_{\exp} = -0.0041 \text{ cm} = 41 \text{ }\mu\text{m}$

Distortion calculation

 $\bar{y} = 0.153 \text{ cm}, y_{\text{exp}} = 0.265 \times \tan(20^{\circ}) = 0.096 \text{ cm}$ distortion = $\bar{y} - y_{\text{exp}} = 0.057 \text{ cm} = 570 \text{ }\mu\text{m}$

Track distortion at B=0T (laser test)

Track distortion at B=1T (beamtest, 2012)

Summary

- Using Garfield++ to simulation electron drift in a electric field calculated by Elmer.
- The simulation result is consistent with the measured distortion for both beam test and laser test.
- Further work: take the effect of C.O.G into account.

Backup slides

Electron endpoints (B=0 T)

Angle: 0°

Electron endpoints (B=0 T)

Angle: 15°

Electron endpoints (B=1 T)

Angle: 0°

Electron endpoints (B=1 T)

Angle: 15°

Electron endpoints (B=1 T)

Angle: 20°

Bo LI (TUHEP)

Event display for laser test

6 / 9 June 19, 2014

Measured charge of hits away from gaps in laser test

Measured charge of hits near gaps in laser test

Distortion of new GEM

Bo LI (TUHEP)