

PARTICLE ID STUDY FOR ANALYSIS IMPROVEMENT

Masakazu Kurata The University of Tokyo

Analysis and software meeting, 07/09/2014

FOR ANALYSIS IMPROVEMENT

• All the analyses are saturated within the present framework

- Needs new idea
- Fundamental new variables might provide improvements of analysis tools
 - dE/dx in TPC
 - Shower profiles in the calorimeters
- Those variables have already boosted lepton ID efficiency
 - \sim 30% improvement can be obtained
 - Show that later
- Will those variables give improvements to other analysis components?
 - Particle ID will be available using those variables
 - Energy correction
 - Flavor tagging?
 - Hope for jet clustering?
 - \rightarrow it is necessary to study them

DE/DX

- For improvement, using dE/dx is one of the powerful tools
 - Particle ID for each track will give a large impact to the analysis
 - Application to general analysis component is very wide
 - Lepton ID
 - o Track energy correction
 - B-tagging?
 - Jet clustering?
- Important factor to use dE/dx is: fluctuation
 - TDR: measurement resolution is 5%
 - So, fluctuation from simulation is within 5% without detector effect

dE/dx definition:

- $\frac{dE}{dx} = \frac{energy \, deposit}{flight \, path \, in \, the \, hit(TPC)}$
- dE/dx can be calculated at any hit point
- Truncated mean is calculated as track dE/dx

 $\left\langle \frac{dE}{dx} \right\rangle = \frac{1}{n} \sum_{i}^{n} \frac{dE_{i}}{dx_{i}}$ upper 30%, lower 8%(important!) hits are discarded to avoid Landau tail(next slide) \rightarrow optimization is necessary

EFFECT OF LANDAU TAIL

- > Landau tail effect muon tracks
 - dE/dx distribution of track hits
 - fitting convolution of Gaussian and Landau
 - Tail can be seen in the case of no truncation
- o Truncated mean distribution MIP pion(0.3GeV/c<p<0.6GeV/c)</p>
 - Good Gaussian shape

DE/DX FLUCTUATION

• Fluctuation of dE/dx using various type of tracks

Estimation of RMS(90)/MEAN

DE/DX DISTRIBUTION

• For each particle

- Polar angle dependence corrected
- Num. of Hits dependence corrected

• Scale to
$$\left< \frac{dE}{dx} \right> = 1.0$$
 for MIP pion

SHOWER PROFILE

- Shower shapes in the calorimeter are different between electron/photon/muon/hadrons
 - So characters of the clusters will be a good tool to distinguish tracks
 - Especially, electromagnetic shower shape is well known
 - Grabbing those information will boost leptonID efficiency/fake rejection efficiency
- Information extraction is based on the fitting:
 - Well-known EM shower profile

$$f(x_{l}, x_{t}) = ac \frac{(c(x - x_{l0}))^{b-1} \cdot \exp(-c(x - x_{l0})) \cdot \exp(-dx_{t})}{\Gamma(b)}$$

o In addition, hit based variable is introduced to identify shower start

• XI20 – length from cluster start to 20% of total energy deposit

Shower profile -Structure in the cluster Hit points in the cal. are converted from (x,y,z) to (xl, xt)

LONGITUDINAL INFORMATION

- Length from calorimeter surface to the point which has maximum energy deposit
 - Of course, there is an energy dependence
 - But, the dependence is logarithmic
 - Taking ratio with Expected shower Max

Exp. Shower Max =
$$1.0(\log \frac{E_0}{E_c} - 0.5)$$
, $E_c = 0.021 \frac{X_0}{Rm} \text{GeV}$

DIFFERENCE BETWEEN ELECTRON/FAKES

TRANSVERSE INFORMATION

Transverse shower profile is characterized by absorption length

- EM shower spread is very small 90% energy within Moliere Radius
- Hadron shower spread is wide
- There is an energy dependence of course, but the effect is small in the case of electron

APPLICATION – LEPTON ID

Lepton ID for single lepton – using likelihood method

- Lepton likeliness: $L = \frac{\prod s}{\prod s + \prod b}$,
- Signal detection efficiency set almost same efficiency

• Signal is HH→(bb)(WW*)→(bb)(I ν jj)

method	Cut based	Likelihood_old	Likelihood_new
Signal(%)	98.1	98.1	97.8

• Background rejection efficiency

	v		
method	Cut based	Likelihood_old	Likelihood_new
ttbar - lep+jets(%)	62.2	-	62.4
ttbar – allhad(%)	7.9	3.1	2.3
ttbar - dilepton(%)	47.2	-	17.9
HH \rightarrow (bb)(bb) (%)	-	2.3	1.0

Note: lepton energy threshold is loosened on likelihood_new
o From E(lep)>15GeV → E(lep)>10GeV

APPLICATION - PARTICLE ID STRATEGY

PARTICLE ID

- o ID efficiency for each basic particle type
 - How are particles identified as each particle type?

• Difference from first trial(AWLC14):

- Changing MC matching method \rightarrow matching eff. becomes 100%
- So, very low momentum muon can't be distinguished from pion because such muons stop in the calorimeter

o ID efficiency:

- Electron can be identified almost perfectly
- Muon ID eff. reduces from 80% to \sim 70%

TRACK ENERGY CORRECTION

• Track energies are corrected using momentum & mass

ц 12 щ 0.12

Zn.08

0.06

0.02

250

300

Reconstructed

With correction

≣ 0.1Perfect for charged

350

400

450

500

550

600

650

Evisible (GeV)

- Using particle ID to identify tracks
- o Visible energy
 - Using qqHH→qq(bb)(bb)
 - So far, overestimated due to misID
 - Correction effect is small due to neutrals^{0.04}
- o Mass distribution
 - Checking Z(Z \rightarrow qq, q is light) and H(H \rightarrow bb)
 - Jet matching with MC truth is applied
 - Effect is small too due to neutrals

FOR FUTURE STUDY

- Particle ID can be used for b-tagging improvement?
- First trial: vertex mass distribution
- O Classifying vertices with particle type using particle ID
- o Example: vertex mass with K π candidates
 - Vertex is from LCFIPlus
 - Choosing thirdary vertex in bjet(corresponds to Ddecay?)
 - Green-blue will become same if PID is perfect

SUMMARY AND TODO

- Explore some fundamental variables for analysis improvement
 - dE/dx in TPC and shower profile
- o dE/dx and shower profile information provide \sim 30% improvement for Isolated lepton ID
- Studying particle ID:
 - Hadron ID eff. is $68\%{\sim}75\%$
 - Energy correction effect is small, but going to good direction
- o Todo:
 - Particle ID optimization
 - study of B and D decay for flavor tagging improvement
 - Pi0 is important for flavor tagging? \rightarrow checking pi0 finder?

BASIC IDEA

- Lepton ID using likelihood is introduced:
 - Lepton selection imposing just one cut
- Target is to find the leptons from W boson as Higgs daughter
 - In some case, lepton energy is so small
 - Form general lepton ID to make the analysis easier
 - Want to apply it to Z lepton finding too

o Likelihood definition:

Isolated lepton likeliness

$$L = \frac{\prod s}{\prod s + \prod b},$$

s:pdfs of signal variables b:pdfs of background variables

DEFINITION OF THE SHOWER AXIS

- Shower axis is the direction of the track intruding into calorimeter
 - This correction will change the shower start distribution from last talk
- All the hit points(x,y,z) are converted to longitudinal and transverse components along to the shower axis

