

VXD Optimisation

Yorgos Voutsinas DESY FLC group

georgios.voutsinas@desy.de

General ILD Optimisation meeting, 18/06/14

Outline

- Long term goal
 - > Define the (often conflicting) set of VXD parameters
- Single tracks study
 - Momentum Impact Parameter (IP) resolution
- Tracking performances
 - > Address few questions on time spatial resolution trade off for CMOS VXD concepts
- Proposed physics studies

Single Tracks – Examined VXD Concepts

- Scope of the study
 - Focus on spatial resolution
 - See how Impact Parameter & Momentum resolution behave as a function of the sensors single point resolution
 - > Could indicate if the assumed sensor single point resolution values are sufficient
 - > Could give hints for the VXD parameters optimisation
 - > More relevant for detectors who slices the bunch train (e.g. CMOS, DEPFET)
 - Start addressing again the VXD layout
 - Double layers (FPCCD, CMOS)
 - Single layers (DEPFET)
 - > Use DBD VXD concept as a reference
- Procedure
 - Take the DBD VXD and substitute the relevant spatial resolution values (with the exception of the single layers model)
 - > Use the std tracking software
 - > We don't examine time resolution beam bkg here

Single Tracks – Examined VXD Concepts

- Examined models
 - > DBD VXD
 - > Hybrid det., CMOS like ladders and FPCCD like shell and cooling system
 - Various CMOS design
 - FPCCD design
 - Single layers VXD (remained unchanged since Lol)
 - ightarrow R_{in} 15mm, MB 0.11% X₀ / layer, s.p. resolution 2.8µm

	DBD V	XD	CMOS 2	1	CMOS 2	2	CMOS	3	FPCCD	
layer	σ _{sp} (μm)	σ _{time} (μs)								
L1/L2	3/6	50 / 10	3/6	50 / 2	5/5	8/8	3/5	50 / 8	1.4 / 1.4	<i></i> Син _и
L3 / L4	4	100	4 / 10	100 / 7	5/5	16 / 16	5/5	16 / 16	2.8 / 2.8	SUNCH F
L5 / L6	4	100	4 / 10	100 / 7	5/5	16 / 16	5/5	16 / 16	2.8 / 2.8	dir,

Single Tracks – Results

- All VXD models exhibit similar momentum resolution
 - > TPC plays the dominant role
 - ILD goals are satisfied
- DBD VXD vs CMOS 1: one can optimise the outer layers for time resolution & power dissipation
 - s.p. res of outer layers : from 4 → 10 μm (>10Xfaster, more power efficient) → negligible effect to IP resolution
- The same doesn't hold true for the inner layer
 - CMOS VXD 3 (3µm) clearly better than CMOS VXD 2 (5µm)
- All concepts (except CMOS 2) behave similar or better (FPCCD) than the DBD detector
- FPCCD has the best IP resolution
- Even CMOS 2 goes asymptotically to 3µm
 is it good enough for c tagging ?

Tracking Perf. vs VXD Parameters

- To address the optimisation of VXD par. the pair bkg should be taken into account
 - Study tracking performances as a function of VXD parametrisation
 - > Use ttbar sample, $\sqrt{s} = 500$ GeV, pair bkg overlaid
- Large parameter space to be explored
- We probe two questions in these slides
 - > Q1: do we need a very fast 2^{nd} layer or $8 10\mu$ s time res. is enough?
 - > Q2: a more precise (but slower) innermost layer is beneficial for IP resolution. What's the impact on Ghost / bkg tracks rate & CPU time / evt?
- Approach
 - Use new mini vector tracking
 - > Fast algorithm that provides satisfactory efficiency for low P_{τ} tracks
 - > Algorithm is under development but can cope at this stage with beam bkg
 - > Next slide we summarise its performance
 - See AWLC 14 slides

https://agenda.linearcollider.org/getFile.py/access?contribId=84&sessionId=17&resId=0&materialId=slides&confId=6301

New Mini – Vector Algorithm

Sample: ttbar, \sqrt{s} = 500 GeV, fast CMOS VXD, pair bkg overlayed, 120 events

Tracking Perf. vs VXD Parameters

• Q1

- A fast layer is quite helpful to bkg and / or ghost track suppresion
- CMOS 1 with 2µs readout at L2 has lower "bad" tracks rate than CMOS 2, despite need to handle X4 more hits in pattern rec.
- Q2
 - Very granular L1 crucial for IP resolution
 - Seems better to combine with very fast L2
 - Reduce "bad" tracks, CPU time
- Various other questions need to be addressed

	CMOS 1	CMOS2	CMOS3	
Hits (x103)	~120	~30	~100	
Bad trks/ evt	~56	~84	~100	
Time / evt (s)	~25	~5	~100	

Proposed Physics Studies – Flavour Tagging

- Tracking studies are good but one needs physic studies to draw more solid conclusions
- VXD main goals
 - Flavour tagging
 - Reconstruction of low momentum tracks
- Flavour tagging
 - > B tagging rather trivial
 - C tagging will drive the VXD specifications
 - Study of c tagging performances in the presence of beam bkg
 - > Flavour tagging neural nets need to be trained with beam bkg
 - > Study of Higgs hadronic branching fractions

Proposed Physics Studies – Low Momentum Tracks

- Mini vector tracking + fast detector provide satisfactory efficiency down to ~ 100 MeV
- The price to pay: reconstruction of pair bkg
 tracks as well
 - Can be suppressed by optimising some VXD layers for speed
 - But how fast we should go?
 - A study demanding on low mom. tracks can point up to which bkg track rate we can cope
 - Possible candidates
 - Light Higgsinos
 - Studied by Hale Sert
 - Vertex charge
 - → Forward backward asymmetry of $e^+ e^- \rightarrow$ ttbar, in hadronic channel

 $\begin{array}{c} e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma \to 2 \tilde{\chi}_1^0 \gamma \ W^* W^* \\ e^+e^- \to \tilde{\chi}_1^0 \tilde{\chi}_2^0 \gamma \ \to 2 \tilde{\chi}_1^0 \gamma \ Z^* \\ \to 2 \tilde{\chi}_1^0 \gamma \ \gamma \end{array}$

P₊ distribution of stable and charged MC particles (cos0 < 0.9397)

Summary – Outlook

- One can reduce the granularity in outer layers (to gain in speed and power dissipation) w/o penalising the IP resolution
- The above doesn't hold true for the innermost layer
 - More concrete conclusions on spatial time resolution trade off can be drawn by a c tagging study, where beam bkg is taking into account for neural nets training
- Mini vectors help increase the tracking efficiency for low P_{τ} tracks
 - > But also the bkg / "bad" tracks
 - > A fast VXD layer can help to better control bkg ghost tracks
 - Light Higgsinos or vertex charge studies could be ideal to point uo to which bkg track rate we can live with
 - Thus the needs for time resolution