Arborereconstruction of ZH

ZH, Z->mumu

- Straight forward reconstruction/analysis
- Key performances
- Tracking
- Muon Identification
- PFA: In the sense of Separation
- Sample: $\sim 17 \mathrm{k}$ events

Recoil Mass Spectrum

Inv Mass spectrum

Radiations: Seems MUCH stronger than I expected.

Di-lepton system: Inv Vs Recoil:

Di Muon System

PID efficiency \& Event Type

Type $=-1: 3.7 \%$, No lepton pair tagged (one Muon Non-accepted, or identified as neutral)

Type $=0: 90.6 \%$, Muon pair tagged
Type 1, 2: 5.6\%, Muon + Pion pair (one Muon Mis ID)
Type 3: 0.07\% Pion pair (~ 2 Muon Mis ID)
Single Muon ID efficiency ~ 95\%:
Inefficiency: Besides acceptance
~ Mainly due to FSR \& Showering (Bremmstrahlung)
Can certainly be improved.

Recoil Mass Vs Type:

EventType : HDauPID

RecoilMass : HDauPID

No Significant dependence: No Bias... (of coz need more statistic to Check)

Total Energy

Everything besides the lepton pair

Invariance mass of Tagged Higgs

Invariance mass of Tagged Higgs

Hinv:

Radiations, Neutrinos, etc

Example: FSR

DRUID, RünNum $=0$, EventNum $=95$ /
ξ

Treatment:
Cone tag, absorbing

Example: Bremsstralung

QRUID, RunNum = 0, EventNum = 141 s^{9}

Treatment:
FD at different depth, grouping

Summary

- Arbor: works as expected
- Separation Validated
- Naive Muon ID leads to reasonable performance
- Will shot down the Muon ID issue
- Treatment towards FSR \& bremsstrahlung
- Radiation Chance seems too large...
- 40 GeV Particle Gun ~97\%; ZH event ~ 95\%
- Next target: EM shower tagging
- Play at different geometry: let's try some crazy idea...

Potential Of PID

Some comparison

FD HCAL, Muon \& Pion

FD ECAL, Muon \& Pion

$E / P<0.5$: eff(muon) $=99.9 \%$, eff(pion) $=11 \%$
HCALFD < 0.33 \&\& ECALFD < 0.33:
eff(muon) $=99 \%$, eff(pion) $=5.2 \%$

ECAL Energy Fraction, Muon \& Pion

HCALFD < 0.33 \&\& ECALFD < 0.33:

