Discovering Supersymmetry and Dark Matter at the International Linear Collider

Mikael Berggren¹

on behalf of the ILC Physics and Detector Study

¹DESY, Hamburg

ICHEP, Valencia, July, 2014

Discovering SUSY and DM at ILC

ICHEP14 1 / 15

Outline

- 2 SUSY with no loop-holes
- 3 Example: Light Higgsinos
- 4 Example: Only WIMPs
- 5 Conclusions

The ILC

The ILC

- A linear e^+e^- collider.
- Total length 31 km
- *E_{CMS}* tunable between 200 and 500 GeV, upgradable to 1 TeV.
- Polarisation e[−]: 80% (e⁺: ≥ 30%)
- $\int \mathcal{L} \sim 250 \text{ fb}^{-1}/\text{year}$
- 2 experiments, sharing one interaction region.
- Concurrent running with the LHC

Mikael Berggren (DESY)

Discovering SUSY and DM at ILC

The ILC

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlaying event".
 - Low cross-sections wrt. LHC, also for background.
 - \Rightarrow Trigger-less operation.
 - High precision (sub-%) measurements needed, to extend our knowledge beyond LEP, Tevatron, LHC.

 \Rightarrow for detectors:

• Low background \Rightarrow detectors can be:

Thin : few % X₀ in front of calorimeters :

Very close to IP: first layer of VXD at 1.5 cm.

 Glose to 4at holes for beam-pipe only lew cm = 0.2 msr un-covered = Area of Suisse Romande (or Schleswig-Holstein, or Conneticut)
 relative to earth

Importance of hermeticity for the searches; and rejection learning

The ILC

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlaying event".
 - Low cross-sections wrt. LHC, also for background.
 - \Rightarrow Trigger-less operation.
 - High precision (sub-%) measurements needed, to extend our knowledge beyond LEP, Tevatron, LHC.

 \Rightarrow for detectors:

- Low background \Rightarrow detectors can be:
 - Thin : few % X_0 in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Suisse Romande (or Schleswig-Holstein, or Conneticut) relative to earth.
- Importance of hermeticity for the searches: γγ rejection !

Loop-hole free SUSY searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism !
- Obviously: There is one NLSP.

Loop-hole free SUSY searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism !
- Obviously: There is one NLSP.

So, at ILC :

- Model independent exclusion/ discovery reach in M_{NLSP} – M_{LSP} plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a hand-full of plots
- NLSP search ↔ "simplified models" @ LHC!

Simplified models

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, at LHC model dependent.
- A few examples (M.B. arXiv:1308.1461)
 - μ_R NLSP
 τ₁ NLSP (minimal σ)

< ロ > < 同 > < 回 > < 回 >

Simplified models

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, at LHC model dependent.
- A few examples (M.B. arXiv:1308.1461)
 - $\tilde{\mu}_{R}$ NLSP
 - $\tilde{\tau}_1$ NLSP (minimal σ).

Discovering SUSY and DM at ILC

Simplified models

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines
 At lepton machine

[______250 ds] ds] 250

150

NLSP : ũn

Exclusion

Discovery

- A few examples (M.B. arXiv:1308.1461)
 - $\tilde{\mu}_{R}$ NLSP
 - $\tilde{\tau}_1$ NLSP (minimal σ).

[750] [25] [250] [

150

NLSP : ű,

Discovering SUSY and DM at ILC

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^\pm}$, $\operatorname{Br}(\chi \to W^{(*)}/Z^{(*)}\tilde{\chi}_1^0)=1$.
- Below thick line: Can't fulfil gaugino-mass GUT-relation.
- Discovery projections to 14 TeV 300/3000 fb⁻¹ (arXiv:1307.7292v2).

... and now the ILC

at 500 GeV...and 1 TeV \Rightarrow Lots of plain vanilla SUSY to explore at ILC!

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^\pm}$, $\operatorname{Br}(\chi \to W^{(*)}/Z^{(*)}\tilde{\chi}_1^0)=1$.
- Note cut x-axis! Here is LEP, $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: Can't fulfil gaugino-mass GUT-relation.
- Discovery projections to 14 TeV 300/3000 fb⁻¹ (arXiv:1307.7292v2).

[] 99] 200 ³⁵ 300 Observed limit (±1 σ = 20.3 fb⁻¹, s=8 TeV ---- Expected limit (±1 σ_{em}) ATLAS 4.7 fb⁻¹. vs = 7 TeV 250 $m_{\gamma^{\pm}} = m_{\mu^{\pm}}$ All limits at 95% CI 3L+2L combined 200 6 150 100 50 300 350 400 0 450 50 m_{7°.7⁺}[GeV] 500 100 150 200 250

... and now the ILC

It 500 GeV...and 1 TeV \Rightarrow Lots of plain vanilla SUSY to explore at ILC!

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}}$, $\operatorname{Br}(\chi \to W^{(*)}/Z^{(*)}\tilde{\chi}_1^0)=1$.
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: Can't fulfil gaugino-mass GUT-relation.
- Discovery projections to 14 TeV 300/3000 fb⁻¹ (arXiv:1307.7292v2).

... and now the ILC

at 500 GeV...and 1 TeV \Rightarrow Lots of plain vanilla SUSY to explore at ILC!

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}}$, Br $(\chi \rightarrow W^{(*)}/Z^{(*)}\tilde{\chi}_1^0)$ =1.
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: Can't fulfil gaugino-mass GUT-relation.
- Discovery projections to 14 TeV 300/3000 fb⁻¹ (arXiv:1307.7292v2).

... and now the ILC

It 500 GeV...and 1 TeV \Rightarrow Lots of plain vanilla SUSY to explore at ILC!

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}}$, Br $(\chi \rightarrow W^{(*)}/Z^{(*)}\tilde{\chi}_1^0)$ =1.
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: Can't fulfil gaugino-mass GUT-relation.
- Discovery projections to 14 TeV 300/3000 fb⁻¹ (arXiv:1307.7292v2).

.. and now the ILC

500 GeV...and 1 TeV \Rightarrow Lots of plain vanilla SUSY to explore at ILC!

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}}$, Br $(\chi \rightarrow W^{(*)}/Z^{(*)}\tilde{\chi}_1^0)$ =1.
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: Can't fulfil gaugino-mass GUT-relation.
- Discovery projections to 14 TeV 300/3000 fb⁻¹ (arXiv:1307.7292v2).

... and now the ILC

at 500 GeV...and 1 TeV \Rightarrow Lots of plain vanilla SUSY to explore at ILC!

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}}$, $\operatorname{Br}(\chi \to W^{(*)}/Z^{(*)}\tilde{\chi}_1^0)=1$.
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: Can't fulfil gaugino-mass GUT-relation.
- Discovery projections to 14 TeV 300/3000 fb⁻¹ (arXiv:1307.7292v2).

... and now the ILC

at 500 GeV...and 1 TeV \Rightarrow Lots of plain vanilla SUSY to explore at ILC!

Discovering SUSY and DM at ILC

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}}$, $\operatorname{Br}(\chi \to W^{(*)}/Z^{(*)}\tilde{\chi}_1^0)=1$.
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: Can't fulfil gaugino-mass GUT-relation.
- Discovery projections to 14 TeV 300/3000 fb⁻¹ (arXiv:1307.7292v2).

... and now the ILC

at 500 GeV...and 1 TeV⇒ Lots of plain vanilla SUSY to explore at ILC!

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}}$, $\operatorname{Br}(\chi \to W^{(*)}/Z^{(*)}\tilde{\chi}_1^0)=1$.
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: Can't fulfil gaugino-mass GUT-relation.
- Discovery projections to 14 TeV 300/3000 fb⁻¹ (arXiv:1307.7292v2).

... and now the ILC

at 500 GeV...and 1 TeV \Rightarrow Lots of plain vanilla SUSY to explore at ILC!

- Natural SUSY: • $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$ • \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}$ (weak scale). • If multi-TeV gaugino masses: • $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV. • $M_{\tilde{\chi}_{1,2}^0}, M_{\tilde{\chi}_1^{\pm}} \approx \mu$
 - Degenerate (ΔM is 1 GeV or less)
- To detect: Tag using ISR photon, then look at rest of event:

SUSY signal and $\gamma\gamma$ background ... and with an ISR photon in addition

A (10) × A (10) × A (10)

- Natural SUSY: • $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$ • \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}$ (weak scale). • If multi-TeV gaugino masses: • $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV. • $M_{\tilde{\chi}_{1,2}^0}, M_{\tilde{\chi}_1^{\pm}} \approx \mu$
 - Degenerate (ΔM is 1 GeV or less)
- To detect: Tag using ISR photon, then look at rest of event:

SUSY signal and $\gamma\gamma$ background ... and with an ISR photon in addition

A (10) × A (10) × A (10)

- Natural SUSY:
 m²_Z = 2 <sup>m²_{Hu} tan² β m²_{Hd} 2 |μ|²
 ⇒ Low fine-tuning ⇒ μ = O(weak scale).
 If multi-TeV gaugino masses:
 χ⁰₁, χ⁰₂ and χ[±]₁ pure higgsino. Rest of SUSY at multi-TeV.
 M_{χ⁰_{1,2}}, M_{χ[±]} ≈ μ
 Degenerate (ΔM is 1 GeV or less)
 </sup>
- To detect: Tag using ISR photon, then look at rest of event:

SUSY signal and $\gamma\gamma$ background ... and with an ISR photon in addition

A (10) × A (10) × A (10)

- Natural SUSY: • $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$ • \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}$ (weak scale). • If multi-TeV gaugino masses: • $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino. Rest of SUSY at multi-TeV. • $M_{\tilde{\chi}_{1,2}^0}, M_{\tilde{\chi}_1^{\pm}} \approx \mu$ • Degenerate (ΔM is 1 GeV or less)
- To detect: Tag using ISR photon, then look at rest of event:

SUSY signal and $\gamma\gamma$ background ... and with an ISR photon in addition

- Studied model points:
 - dm1600: Δ(M)=1.6 GeV, m_h=124 GeV, M_{χ̃1}=164.2 GeV.
 - dm770: Δ(M)=0.77 GeV, m_h=127 GeV, M_{χ̃1}=166.6 GeV.
- Very hard for LHC.
- Channels: Only $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ in s-channel (no $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ due to weak isospin, no t-channel due to higgsino nature)

H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]

Mikael Berggren (DESY)

A B F A B F

- Studied model points:
 - dm1600: Δ(M)=1.6 GeV, m_h=124 GeV, M_{χ̃1}=164.2 GeV.
 - dm770: Δ(M)=0.77 GeV, m_h=127 GeV, M_{χ̃1}=166.6 GeV.
- Very hard for LHC.
- Channels: Only $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ in s-channel (no $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ due to weak isospin, no t-channel due to higgsino nature)

H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]

Mikael Berggren (DESY)

ICHEP14 9 / 15

A (10) A (10) A (10)

- Studied model points:
 - dm1600: Δ(M)=1.6 GeV, m_h=124 GeV, M_{χ̃1}=164.2 GeV.
 - dm770: $\Delta(M)=0.77$ GeV, $m_h=127$ GeV, $M_{\tilde{\chi}_1^0}=166.6$ GeV.
- Very hard for LHC.
- Channels: Only $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ in s-channel (no $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ due to weak isospin, no t-channel due to higgsino nature)

H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]

- Few-body decays and radiative decays (for ^χ⁰₂) (calculated with Herwig).
- E_{ISR} gives reduced √s⁷: "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_1^0}, M_{\tilde{\chi}_1^{\pm}})$ to ~ 100 MeV.

A (10) > A (10) > A

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_1^0}, M_{\tilde{\chi}_1^{\pm}})$ to ~ 100 MeV.

A (1) > A (2) > A

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_1^0}, M_{\tilde{\chi}_1^{\pm}})$ to ~ 100 MeV.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_{1}^{0}}, M_{\tilde{\chi}_{1}^{\pm}})$ to \sim 100 MeV.

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

< 回 > < 三 > < 三 >

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

A (10) A (10) A (10)

Only WIMPs

 Cosmology ⇒ 25% of universe = Dark Matter

- One possibility: WIMPs (χ). What if this is the only accessible NP ?
 - Search for direct WIMP pair-production at collider : Need to make the invisible visible:
 - Require initial state radiation which will recoil against "nothing"
 - LHC: $pp \rightarrow \chi \chi g$ or $\chi \chi \gamma$
 - ILC: $e^+e^- \rightarrow \chi \chi \gamma$ (Full simulation study. C. Bartels, J. List, M.B. arXiv:1206.6639v1, and A. Chaus, Thesis, in preparation.)
 - Model-independent Effective operator approach to "?"
 - Exclusion regions in M_{χ}/Λ plane, for each operator.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Only WIMPs

- Cosmology ⇒ 25% of universe = Dark Matter
- One possibility: WIMPs (χ). What if this is the only accessible NP ?

 Search for direct WIMP pair-production at collider : Need to make the invisible visible:

- Require initial state radiation which will recoil against "nothing"
- LHC: $pp \rightarrow \chi \chi g$ or $\chi \chi \gamma$
- ILC: $e^+e^- \rightarrow \chi \chi \gamma$ (Full simulation study. C. Bartels, J. List, M.B. arXiv:1206.6639v1, and A. Chaus, Thesis, in preparation.)
- Model-independent Effective operator approach to "?"
 - Exclusion regions in M_{χ}/Λ plane, for each operator.

ICHEP14 12 / 15

Only WIMPs

- Cosmology ⇒ 25% of universe = Dark Matter
- One possibility: WIMPs (χ). What if this is the only accessible NP ?

- Search for direct WIMP pair-production at collider : Need to make the invisible visible:
 - Require initial state radiation which will recoil against "nothing"
 - LHC: $pp \rightarrow \chi \chi g$ or $\chi \chi \gamma$
 - ILC: $e^+e^- \rightarrow \chi \chi \gamma$ (Full simulation study. C. Bartels, J. List, M.B. arXiv:1206.6639v1, and A. Chaus, Thesis, in preparation.)
- Model-independent Effective operator approach to "?"
 - Exclusion regions in M_{χ}/Λ plane, for each operator.

Backgrounds and Signal extraction

Irreducible Backgrounds • $ee \rightarrow \nu \nu \gamma$ polarised beams Recoil-mass peaks at M_Z • "switched off" by $P(e^{-})=1$. 10 • $e^+e^- \rightarrow e^+e^-\gamma$ • mimics signal if $e^+e^$ undetected crucial to apply veto from low 350 400 450 5 M..... [GeV angle calorimeter $P(e^{-}, e^{+})$ $\nu \bar{\nu} \gamma$ $e^+e^-\gamma$ Mass & σ from spectrum shape (0%, 0%)67% 23% (+80%, -60%)25% 75% fractional event counting: Weight events by $S_{bin}/\sqrt{B_{bin}}$

Include systematic errors.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Examples:
 - Vector operator ("spin independent"), S_χ = 1/2
 - Axial-vector operator ("spin dependent"), $S_{\chi} = 1/2$

LHC data: CMS PAS EXO-12-048, projections: arXiv:1307.5327

• LHC reaches higher masses, ILC smaller cross-section.

Note:

- UHC curves assume pure coupling to hadrons, while
- ILC curves assume pure coupli to toptons.
- Not a priori comparable; rathe

- Examples:
 - Vector operator ("spin independent"), S_χ = 1/2
 - Axial-vector operator ("spin dependent"), $S_{\chi} = 1/2$

LHC data: CMS PAS EXO-12-048, projections: arXiv:1307.5327

• LHC reaches higher masses, ILC smaller cross-section.

Note:

- LHC curves assume pure coupling to hadrons, while
- ILC curves assume pure coupling to leptons.
- Not a priori comparable; rather complementary!

- Examples:
 - Vector operator ("spin independent"), S_χ = 1/2
 - Axial-vector operator ("spin dependent"), $S_{\chi} = 1/2$

LHC data: CMS PAS EXO-12-048, projections: arXiv:1307.5327

• LHC reaches higher masses, ILC smaller cross-section.

Note:

- LHC curves assume pure coupling to hadrons, while
- ILC curves assume pure coupling to leptons.
- Not a priori comparable; rather complementary!

Mikael Berggren (DESY)

14 / 15

- Examples:
 - Vector operator ("spin independent"), $S_{\chi} = 1/2$
 - Axial-vector operator ("spin dependent"), $S_{\chi} = 1/2$

LHC data: CMS PAS EXO-12-048, projections: arXiv:1307.5327

• LHC reaches higher masses, ILC smaller cross-section.

Note:

- LHC curves assume pure coupling to hadrons, while
- ILC curves assume pure coupling to leptons.
- Not a priori comparable; rather complementary!

Mikael Berggren (DESY)

At ILC:

- Loop-hole free discovery potential for SUSY, up to the kinematic limit.
- Includes a vast region of moderate-to-small LSP-NLSP mass-differences, not explorable by hi-lumi LHC.
- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC can discover, and determine model-parameters, high-mass sector ones included.
- In searches for dark matter, ILC yields orthogonal information to LHC and direct searches.
- Tests contact interaction scales up to 3-4 TeV.
- In addition: WIMP property determination (mass: 1-2%, helicity structure, spin of mediator) ⇒ model discrimination

Mikael Berggren (DESY)

Discovering SUSY and DM at ILC

At ILC:

- Loop-hole free discovery potential for SUSY, up to the kinematic limit.
- Includes a vast region of moderate-to-small LSP-NLSP mass-differences, not explorable by hi-lumi LHC.
- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC can discover, and determine model-parameters, high-mass sector ones included.
- In searches for dark matter, ILC yields orthogonal information to LHC and direct searches.
- Tests contact interaction scales up to 3-4 TeV.
- In addition: WIMP property determination (mass: 1-2%, helicity structure, spin of mediator) ⇒ model discrimination

Mikael Berggren (DESY)

Discovering SUSY and DM at ILC

ICHEP14 15 / 15

At ILC:

- Loop-hole free discovery potential for SUSY, up to the kinematic limit.
- Includes a vast region of moderate-to-small LSP-NLSP mass-differences, not explorable by hi-lumi LHC.
- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC can discover, and determine model-parameters, high-mass sector ones included.
- In searches for dark matter, ILC yields orthogonal information to LHC and direct searches.
- Tests contact interaction scales up to 3-4 TeV.
- In addition: WIMP property determination (mass: 1-2%, helicity structure, spin of mediator) ⇒ model discrimination

Mikael Berggren (DESY)

Discovering SUSY and DM at ILC

ICHEP14 15 / 15

At ILC:

- Loop-hole free discovery potential for SUSY, up to the kinematic limit.
- Includes a vast region of moderate-to-small LSP-NLSP mass-differences, not explorable by hi-lumi LHC.
- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC

See also: The other side of SUSY at the ILC

Poster **Precision measurement of SUSY at the ILC**, presented by J. List

LHC and direct searcnes.

- Tests contact interaction scales up to 3-4 TeV.
- In addition: WIMP property determination (mass: 1-2%, helicity structure, spin of mediator) ⇒ model discrimination

Mikael Berggren (DESY)

Discovering SUSY and DM at ILC

ICHEP14 15 / 15

Thank You !

<ロ> <0<0</p>