Discovering Supersymmetry and Dark Matter at the International Linear Collider

Mikael Berggren¹, for LCC

¹DESY, Hamburg

ICHEP, Valencia, July, 2014

Outline

- The ILC
- SUSY with no loop-holes
- 3 Example: WIMPs
- Example: Light Higgsinos
- Conclusions

The ILC

- A linear e⁺e⁻ collider.
- \bullet E_{CMS} tunable between 200 and 500 GeV, upgradable to 1 TeV.
- Total length 31 km
- $\int \mathcal{L} \sim 500 \text{ fb}^{-1}$ in 2 years
- Polarisation e[−]: 80% (e⁺: ≥ 30%)
- 2 experiments, sharing one interaction region.
- Concurrent running with the LHC

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties
 - No "underlaying event"
 - Low cross-sections wrt. LHC, also for background
 - Trigger-less operation.
 - High precision (sub-%) measurements needed, to extend our knowledge beyond LEP, Tevatron, LHC.

The ILC is not LHC

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underlaying event".
 - Low cross-sections wrt. LHC, also for background.
 - Trigger-less operation.
 - High precision (sub-%) measurements needed, to extend our knowledge beyond LEP, Tevatron, LHC.

- Low background ⇒ detectors can be:
 - Thin: few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Suisse Romande (or Schleswig-Holstein, or Conneticut) relative to earth
- Importance of this for the following: $\gamma\gamma$ rejection :

- Low background ⇒ detectors can be:
 - Thin: few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Suisse Romande (or Schleswig-Holstein, or Conneticut) relative to earth.
- Importance of this for the following: $\gamma\gamma$ rejection :

- Low background ⇒ detectors can be:
 - Thin: few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Suisse Romande (or Schleswig-Holstein, or Conneticut) relative to earth.
- Importance of this for the following: $\gamma\gamma$ rejection :

- Low background ⇒ detectors can be:
 - Thin: few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Suisse Romande (or Schleswig-Holstein, or Conneticut) relative to earth.
- Importance of this for the following: $\gamma\gamma$ rejection :

- Low background ⇒ detectors can be:
 - Thin: few % X₀ in front of calorimeters
 - Very close to IP: first layer of VXD at 1.5 cm.
 - Close to 4π : holes for beam-pipe only few cm = 0.2 msr un-covered = Area of Suisse Romande (or Schleswig-Holstein, or Conneticut) relative to earth.
- Importance of this for the following: $\gamma\gamma$ rejection :

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.
- Model independent exclusion/ discovery reach in M_{NLSP} – M_{LSP} plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a hand-full of plots
- Cf. "simplified models" at LHC!

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.
- Model independent exclusion/ discovery reach in M_{NLSP} – M_{LSP} plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a hand-full of plots
- Cf. "simplified models" at LHC!

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, at LHC model dependent.

Both discover and exclude up to some GeV from the kinematic limit!

A few examples (M.B. arXiv:1308.1461)
μ̄_R NLSP
τ̄₁ NLSP

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, at LHC model dependent.

- A few examples (M.B. arXiv:1308.1461)
 - μ̃_R NLSP
 - $\tilde{\tau}_1$ NLSP (minimal σ).

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, at LHC model dependent.

- A few examples (M.B. arXiv:1308.1461)
 - $\tilde{\mu}_R$ NLSP
 - $\tilde{\tau}_1$ NLSP (minimal σ).

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, at LHC model dependent.

- A few examples (M.B. arXiv:1308.1461)
 - $\tilde{\mu}_R$ NLSP
 - $\tilde{\tau}_1$ NLSP (minimal σ).

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, at LHC model dependent.

- A few examples (M.B. arXiv:1308.1461)
 - $\tilde{\mu}_R$ NLSP
 - $\tilde{\tau}_1$ NLSP (minimal σ).

- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, at LHC model dependent.

- A few examples (M.B. arXiv:1308.1461)
 - $\tilde{\mu}_R$ NLSP
 - $\tilde{\tau}_1$ NLSP (minimal σ).

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}}$, Br $(\chi \to W^{(*)}/Z^{(*)})$ =100%.
- Note cut x-axis! Here is LEP, χ[±] only, any decay-mode!
- Below thick line: No GUT-scale gaugino mass-unification.
- Project to 14 TeV 300/3000 fb (arXiv:1307.7292v2).

... and now the ILC

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}}$, Br $(\chi \to W^{(*)}/Z^{(*)})$ =100%.
- Note cut x-axis! Here is LEP, [±]
 [±]
 only, any decay-mode!
- Below thick line: No GUT-scale gaugino mass-unification
- Project to 14 TeV 300/3000 fb (arXiv:1307.7292v2).

... and now the ILC

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}^0_2}=M_{\tilde{\chi}^\pm_1}$, Br $(\chi o W^{(*)}/Z^{(*)})$ =100%
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: No GUT-scale gaugino mass-unification.
- Project to 14 TeV 300/3000 fb (arXiv:1307.7292v2).

... and now the ILC

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}^0_2}=M_{\tilde{\chi}^\pm_1}$, Br $(\chi o W^{(*)}/Z^{(*)})$ =100%
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: No GUT-scale gaugino mass-unification.
- Project to 14 TeV 300/3000 fb (arXiv:1307.7292v2).

... and now the ILC

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}^0_2}=M_{\tilde{\chi}^\pm_1},$ $\text{Br}(\chi \to W^{(*)}/Z^{(*)})=100\%$
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: No GUT-scale gaugino mass-unification.
- Project to 14 TeV 300/3000 fb (arXiv:1307.7292v2).

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}^0_2}=M_{\tilde{\chi}^\pm_1}$, ${\rm Br}(\chi \to W^{(*)}/Z^{(*)})$ =100%
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: No GUT-scale gaugino mass-unification.
- Project to 14 TeV 300/3000 fb (arXiv:1307.7292v2).

... and now the ILC

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}^0_2}=M_{\tilde{\chi}^\pm_1}$, ${\rm Br}(\chi \to W^{(*)}/Z^{(*)})$ =100%
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: No GUT-scale gaugino mass-unification.
- Project to 14 TeV 300/3000 fb (arXiv:1307.7292v2).

... and now the ILC

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}^0_2}=M_{\tilde{\chi}^\pm_1},$ ${\rm Br}(\chi \to W^{(*)}/Z^{(*)})$ =100%
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: No GUT-scale gaugino mass-unification.
- Project to 14 TeV 300/3000 fb (arXiv:1307.7292v2).

... and now the ILC

- Compare with LHC, here Atlas (arXiv:1403.5294v1):
 - Di- and tri-lepton searches, $M_{\tilde{\chi}^0_2}=M_{\tilde{\chi}^\pm_1},$ ${\rm Br}(\chi \to W^{(*)}/Z^{(*)})$ =100%
- Note cut x-axis! Here is LEP $\tilde{\chi}_1^{\pm}$ only, any decay-mode!
- Below thick line: No GUT-scale gaugino mass-unification.
- Project to 14 TeV 300/3000 fb (arXiv:1307.7292v2).

... and now the ILC

WIMPs

- Cosmology ⇒ 25% of universe = Dark Matter
- One possibility: WIMPs (χ).
- Model-independent interpretation: Effective operator approach
 - Exclusion regions in M_{χ}/Λ plane, for each operator.
- Searches for direct WIMP production at collider Need to make the invisible visible:
 - Require initial state radiation which will recoil against "nothing
 - LHC: $pp \rightarrow \chi \chi q$ or $\chi \chi \gamma$
 - ILC: $e^+e^- \rightarrow \chi \chi \gamma$ (Full simulation study in C. Bartels, J. List, M.B.

WIMPs

- Cosmology ⇒ 25% of universe = Dark Matter
- One possibility: WIMPs (χ).
- Model-independent interpretation: Effective operator approach
 - Exclusion regions in M_{χ}/Λ plane, for each operator.
- Searches for direct WIMP production at collider Need to make the invisible visible:
 - Require initial state radiation which will recoil against "nothing"
 - LHC: $pp \rightarrow \chi \chi g$ or $\chi \chi \gamma$
 - ILC: $e^+e^- \rightarrow \chi \chi \gamma$ (Full simulation study in C. Bartels, J. List, M.B. arXiv:1206.6639v1, and A. Chaus, Thesis,in preparation.)

Irreducible Backgrounds

$ee \rightarrow \nu \nu \gamma$

- Recoil-mass peaks at M_Z
- "switched off" by $P(e^-)$ =-1.

radiative Bhabha's: $e^+e^- \rightarrow e^+e^-\gamma$

- mimics signal if e⁺e⁻ undetected
- crucial to apply veto from low angle calorimeter

$P(e^-,e^+)$	$\nu \bar{\nu} \gamma$	$e^+e^-\gamma$
(0%, 0%)	67%	23%
(+80%, -60%)	25%	75%

Systematic Uncertainties and Spectrum shape

Systematic Uncertainties: Quite imporant

- Luminosity: $\delta \mathcal{L}/\mathcal{L} = 0.11\%$
- beam energy spectrum: full difference between different ILC options ⇒ 3% total.
- Polarization: $\delta P/P = 0.25\%$ per beam
- photon reconstruction efficiency: from data.

Spectrum shape: Gain senistivity, mitigate systematics

- counting experiment:
 - total number of signal S and background B
 - significance S/\sqrt{B}
- fractional event counting:
 - Weight events by $S_{bin}/\sqrt{B_{bin}}$
 - Mayor improvment in sesitivity in the presence of systematics.

Systematic Uncertainties and Spectrum shape

Systematic Uncertainties: Quite imporant

- Luminosity: $\delta \mathcal{L}/\mathcal{L} = 0.11\%$
- beam energy spectrum: full difference between different ILC options ⇒ 3% total.
- Polarization: $\delta P/P = 0.25\%$ per beam
- photon reconstruction efficiency: from data.

Spectrum shape: Gain senistivity, mitigate systematics

- counting experiment:
 - total number of signal S and background B
 - significance S/\sqrt{B}
- fractional event counting:
 - Weight events by $S_{bin}/\sqrt{B_{bin}}$
 - Mayor improvment in sesitivity in the presence of systematics.

Systematic Uncertainties and Spectrum shape

Comparison with current LHC Results

- Vector operator ("spin independent"), $S_{\chi} = 1/2$
- Axial-vector operator ("spin dependent"), $S_{\chi} = 1/2$
- LHC reaches higher masses, ILC smaller cross-section.

- Vector operator ("spin independent"), $S_{\chi} = 1/2$
- Axial-vector operator ("spin dependent"), $S_{\chi} = 1/2$
- LHC reaches higher masses, ILC smaller cross-section.

- Vector operator ("spin independent"), $S_{\chi} = 1/2$
- Axial-vector operator ("spin dependent"), $S_x = 1/2$
- LHC reaches higher masses, ILC smaller cross-section.

Note:

- LHC curves assume pure coupling to hadrons, while
- ILC curves assume pure coupling
- to leptons.
- Not a priori comparable; rather complementary!

- Vector operator ("spin independent"), $S_x = 1/2$
- Axial-vector operator ("spin dependent"), $S_x = 1/2$
- LHC reaches higher masses, ILC smaller cross-section.

Note:

- LHC curves assume pure coupling to hadrons, while
- ILC curves assume pure coupling to leptons.
- Not a priori comparable; rather complementary!

- Vector operator ("spin independent"), $S_x = 1/2$
- Axial-vector operator ("spin dependent"), $S_x = 1/2$
- LHC reaches higher masses, ILC smaller cross-section.

Note:

- LHC curves assume pure coupling to hadrons, while
- ILC curves assume pure coupling to leptons.
- Not a priori comparable; rather complementary!

- Natural SUSY:
 - $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 |\mu|^2$
 - \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}(\text{weak scale})$.
 - If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino.
 - $M_{\tilde{\chi}_{12}^0}, M_{\tilde{\chi}_{1}^{\pm}} \approx \mu$
 - Degenerate (ΔM is 1 GeV or less)
 - Rest of SUSY at multi-TeV.
- Detailed simulation study of such a model: H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]

- Natural SUSY:
 - $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 |\mu|^2$
 - \Rightarrow Low fine-tuning $\Rightarrow \mu = \mathcal{O}(\text{weak scale})$.
 - If multi-TeV gaugino masses:
 - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ pure higgsino.
 - $M_{\tilde{\chi}_{12}^0}$, $M_{\tilde{\chi}_{1}^{\pm}} \approx \mu$
 - Degenerate (ΔM is 1 GeV or less)
 - Rest of SUSY at multi-TeV.
- Detailed simulation study of such a model: H. Sert, F. Brümmer, J. List, G. Moortgat-Pick, T. Robens, K. Rolbiecki, M.B., EPJC (2013) 73:2660 [arXiv:1307.3566v2]

- Studied model points:
 - dm1600: $\Delta(M)$ =1.6 GeV, m_h =124 GeV, $M_{\tilde{\chi}_1^0}$ =164.2 GeV.
 - dm770: $\Delta(M)$ =0.77 GeV, m_h =127 GeV, $M_{\tilde{\chi}_1^0}$ =166.6 GeV.
- $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ no $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ due to weak isospin, no t-channel due to higgsino nature.
- Very hard for LHC

- Studied model points:
 - dm1600: $\Delta(M)$ =1.6 GeV, m_h =124 GeV, $M_{\tilde{\chi}_1^0}$ =164.2 GeV.
 - dm770: $\Delta(M)$ =0.77 GeV, m_h =127 GeV, $M_{\tilde{\chi}_1^0}$ =166.6 GeV.
- $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ no $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ due to weak isospin, no t-channel due to higgsino nature.
- Very hard for LHC

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- Tag using ISR photon, the look at rest of event.
- E_{ISR} gives reduced $\sqrt{s'}$: "auto-scan". End-point gives masses to \sim 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}^0_+}, M_{\tilde{\chi}^\pm_+})$ to \sim 100 MeV.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- Tag using ISR photon, the look at rest of event.
- E_{ISR} gives reduced $\sqrt{s'}$: "auto-scan". End-point gives masses to \sim 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}^0_+}, M_{\tilde{\chi}^\pm_+})$ to \sim 100 MeV.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- Tag using ISR photon, the look at rest of event.
- E_{ISR} gives reduced $\sqrt{s'}$: "auto-scan". End-point gives masses to \sim 1 GeV.
- Close to end-point, E_π gives $\Delta(M_{\tilde{\chi}^0_1}, M_{\tilde{\chi}^\pm_1})$ to \sim 100 MeV.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- Tag using ISR photon, the look at rest of event.
- E_{ISR} gives reduced √s': "auto-scan". End-point gives masses to ~ 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\widetilde{\chi}^0_4}, M_{\widetilde{\chi}^\pm_4})$ to \sim 100 MeV.

- Few-body decays and radiative decays (for $\tilde{\chi}_2^0$) (calculated with Herwig).
- Separate $\tilde{\chi}_1^{\pm}$ from $\tilde{\chi}_2^0$: Either semi-leptonic f.s.: Only $\tilde{\chi}_1^{\pm}$, or γ : only $\tilde{\chi}_2^0$.
- Tag using ISR photon, the look at rest of event.
- E_{ISR} gives reduced $\sqrt{s'}$: "auto-scan". End-point gives masses to \sim 1 GeV.
- Close to end-point, E_{π} gives $\Delta(M_{\tilde{\chi}_{1}^{0}}, M_{\tilde{\chi}_{1}^{\pm}})$ to \sim 100 MeV.

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

- Use to extract the model-parameters μ, M₁ and M₂ (little tan β dependence).
- ullet μ can be determined to \pm 4 %.
- Limits on M_1 and M_2 after $\int \mathcal{L} = 2ab^{-1}$.
- For both models: Sign determined, allowed lower and upper limits on M₂ (for dm1600 also for M₁).

Conclusions

At ILC:

- Loop-hole free discovery potential for SUSY, up to the kinematic limit.
- Includes a vast region of moderate-to-small LSP-NLSP mass-differences, not explorable by hi-lumi LHC.
- In searches for dark matter, ILC yields orthogonal information to LHC and direct searches.
- Tests contact interaction scales up to 3-4 TeV.
- In addition: WIMP property determination (mass: 1-2%, helicity structure, spin of mediator) ⇒ model discrimination
- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC can discover, and determine model-parameters, high-mass secto ones included.

Conclusions

At ILC:

- Loop-hole free discovery potential for SUSY, up to the kinematic limit.
- Includes a vast region of moderate-to-small LSP-NLSP mass-differences, not explorable by hi-lumi LHC.
- In searches for dark matter, ILC yields orthogonal information to LHC and direct searches.
- Tests contact interaction scales up to 3-4 TeV.
- In addition: WIMP property determination (mass: 1-2%, helicity structure, spin of mediator) ⇒ model discrimination
- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC can discover, and determine model-parameters, high-mass sector ones included.

Conclusions

At ILC:

- Loop-hole free discovery potential for SUSY, up to the kinematic limit.
- Includes a vast region of moderate-to-small LSP-NLSP mass-differences, not explorable by hi-lumi LHC.
- In searches for dark matter, ILC yields orthogonal information to LHC and direct searches.
- Tests contact interaction scales up to 3-4 TeV.
- In addition: WIMP property determination (mass: 1-2%, helicity structure, spin of mediator) ⇒ model discrimination
- Even in natural SUSY scenarios where the only sparticles below the multi TeV range are almost mass-degenerate higgsinos: ILC can discover, and determine model-parameters, high-mass sector ones included.