

BeamCal Simulation Studies at SCIPP

FCAL Segmentation Working Group Meeting 14 July 2014

Bruce Schumm UCSC/SCIPP

The SCIPP/UCSC BeamCal Simulation Group

Includes PI (me) plus three undergraduates; one (Milke) supported by US/DOE R&D funds

A REALING

Bryce Burgess Olivia Johnson Christopher Milke

1 States and

Also enjoy critical support from Norman Graf at SLAC

We all know what/where the BeamCal is...

Immediate Goals of Group

 Confirm/refine estimates of single-electron efficiency as a function of radius and energy

Implement radial segmentation scheme (done)

 Explore effect of anti-DID field on backgrounds and efficiency

Determine optimal segmentation size

Implement realistic IP/BeamCal geometry

Physics analysis?

Reconstruction Algorithm

- Choose seed layer
- Subtract mean background from all pixels
- Sum energy in sliding window ("tile") of NxN beamcal pixels (N is optimized)
- Chose highest 50 tile depositions in layer

• Reject spurious tiles via longitudinal patterns by choosing radial-dependent cut on total energy that allows 10% of background events to be misidentified as signal

250 GeV Reconstruction Efficiency

250GeV Efficiency Various Sigma

100 GeV Reconstruction Efficiency

100GeV Efficiency Various Sigma

50 GeV Reconstruction Efficiency

50GeV Efficiency Various Sigma Cuts

These results are somewhat worse than those seen by Uriel Nauenberg et al. at the University of Colorado, which were incorporated in the DBD studies

Could it be that our backgrounds are worse (see next slide)

Include anti-DID magnet in beam delivery and re-run (should account for some of S/N difference; maybe all?)

Anti-DID files are now available (thanks Norman!)

Signal to Noise Comparison

Colorado:Mean background is x100 mean signalSCIPP:Mean background is x500 mean signalHave been unable to understand what changed

Re-Segmenting the BeamCal

• Migrate from rectilinear (x,y) segmentation to concentric segmentation

• Pixel size is adjustable parameter (see next two slides)

• What is meant by "NxN tile" required a little thought (see following two slides)

Done and ready to test

7 mm Pixel Size

Tile Picture

3.5 mm Pixel Size

Examples of "2x2" Tiles for Concentric Segmentation

Tile Picture

Examples of "3x3" Tiles for Concentric Segmentation

Tile Picture

IP Elements and Geometry

Signal files in use have curious "mask" that occludes the BeamCal (see next slide)

Elements to confirm/refine:

- Beam Cal geometry (Wolfgang Lohmann?)
- Confirm Beam Cal segmentation (Andre Sailer?)
- CLIC_SiD configuration (Christian Grefe?)
- New Beampipe Geometry (Christian Grefe?)
- Masks (Tom Markiewicz and Takashi Maruyama)

Interaction point of 150 GeV signal electrons

150GeV X-Y Position hit Occupancy

150

100

50

-50

-100

-150

-100

-50

0

BeamCal Simulations: Next Steps

• Analyze anti-DID samples with (x,y) segmentation

- Explore effects of pixel size
- Test radial segmentation

 Improve BeamCal and IP model in LCSim framework

• Suggestions?

Backup

Background Distribution in Radial Bins

BeamStrahlung (e+e-) Truth Frequency

Background Distribution in Phi Bins

BeamStrahlung (e+e-) Truth Frequency

