

BeamCal Reconstruction Algorithm Simulations for TB

Lucia Bortko, DESY

1st FCAL Clustering Meeting | 14 July 2014

Beam Calorimeter for ILC

BeamCal aimed:

- Detect sHEe
- **Determine Beam Parameters** _
- Mask backscattered low energetic particles

Tungsten absorber

Diamond sensor

.

•

BeamCal Segmentation

Segmentation (US)

pads size are the same

pads size are proportional to the radius

Segmentation (PS)

Similar number of channels

Energy Deposition due to Beamstrahlung

- Beam parameters taken from the ILC TDR Nov 2012
 - Nominal parameter set
 - Center-of-mass energy 1 TeV

→ considered as Background (BG)

PS decrease deposited energy per pad in a high BG area

Algorithm

÷

SH

- SH + BG average by 10th 1. previous BXs BG
- 2. Select layers from 5th to 20th
- Applying energy threshold 5 RMS 3.
- Combine to towers, calculate its energy 4.
- 5. Search shower core (max energetic tower)
 - * if there \geq 13 cells (not necessarily sequent), search for neighbor towers
 - * if in neighbor \geq 9 cells & at least 1 neighbor
 - => shower defined
 - * Candidate towers are considered to shower within Rm=1.2 cm or at least 8
- pads around shower core
 - => shower created
- 6. Next shower: repeat step 5
- 7. For each shower calculating
 - R_{COG} , φ_{COG} , E_{sh}

Δ

Tower

Fake Rate. Efficiency of Shower Reconstruction

Checking fake rate (100 files were used)

	Layers to be consider ed	RMS applyed	Min number of cells in a row		Fake rate	
			SH max	Neighbor	US	PS
Case 1 (suitable)	5-20	5 RMS	13	9	2 %	0 %
Case 2 (relaxed)	5-20	5 RMS	10	6	3%	3%

Efficiency:

Efficiency of shower reconstruction for 500 GeV electron

Efficiency of shower reconstruction for 200 GeV electron

Efficiency of shower reconstruction for 50 GeV electron

Energy deposition from 200 GeV electrons

Deposited energy over the all radii of calorimeter:

Energy resolution vs Energy of Electron for low BG area

7<R<12 [cm]

Energy resolution vs Energy of Electron for high BG area

E resolution vs Radius

Current work

-> Check algorithm for fake rate with 1000 BG files (PS and US), which I recently simulated

- -> Adjust algorithm, if fake rate is too high
- -> Get energy and spatial resolution for this algorithm
- -> Writing report about simulations for BeamCal

-> Simulations for TB

Preparations to the Test Beam

Beam Parameters

Konrad kindly provided information about beam parameters and thesis, where details can be found

* Thesis: TB 2010 on T9 beam line, W-HCAL prototype, 30 layers, 1-10 GeV

Negative polarity		
s an		
per		
ide		
ensi		
an re o the		
)k ev		

Beam Parameters

Longitudinal shower profile

Beam Parameters

Longitudinal shower profile

after 2, 4, 6, 8 Xo

Current test beam configuration

In the current configuration the sensor planes are placed in a 4.5 mm interspace (one tungsten layer removed)

7/10/2013

Setup Pictures

Issues

-> What we want to get on TB => simulate?

> energy resolution, longitudinal shower profile, shower radius,...?

- -> Which statistics on which energy BeamCal and LumiCal need (how many days who will need for measurements)?
 > In total we have 5 days of measuring time: 1day-adjusting + 2days LumiCal + 2days BeamCal
 > 2days = 1day: 1GeV + 1day: 6GeV
 > 10k events per day
- -> Who considering to make simulations for BeamCal and Lumical for TB prototypes? Are any of them already done?
 > BeamCal: Lucia, Veta?, ...
 - > LumiCal: Bogdan?, ...

