

Optimization of detectors for the ILC

Taikan Suehara (Kyushu University, Japan) on behalf of ILD and SiD group

International Linear Collider

and the second second

e⁺ e⁻ collider of \sqrt{s} = 250 to 500 GeV in 31 km of linear tunnel (upgrade: 1000 GeV in 50 km)

typical luminosity (now reconsidering)

- Salara) a re-

Center-of-mass energy	Integrated Lumi.	Integ. Lumi (ILC up)
250 GeV	250 fb ⁻¹	1150 fb ⁻¹
350 GeV		
500 GeV	500 fb ⁻¹	1600 fb ⁻¹
1000 GeV	1000 fb ⁻¹	2500 fb ⁻¹

ILC History & Status

1980's-2001: Studies and proposals of TESLA, NLC & JLC 2005: Efforts unified to ILC based on the cold technology 2007: ILC Reference Design Report 2009: Letter of Intent of ILC detectors First optimization done here 2012: ILC Accelerator TDR & Detector DBD Realistic detector report with cost estimation 2012: Higgs Discovery ~2013: Interest of Japanese government raised Japanese site candidate endorsed to Kitakami (Tohoku)

Physics targets and site/political conditions clearer now - re-optimization towards "Green sign" expected in a few years!

What will ILC be built for?

1. Higgs as a probe for New Physics

- Higgs discovery phase has been over
 → precise measurements!
- New physics shift Higgs properties
- O(1%) Higgs coupling measurements is critical for new physics search and model identification

2. Various direct/indirect searches

- Electroweakino search (eg. Higgsino) ILC is sensitive to LHC blind spots
- DM direct search
- top & electroweak precise measurements
- Exotic search

ILC & LHC: difference

- No QCD production & monochromatic energy
 - LHC: 'One Higgs per 10¹⁰ collision' (collision: qq inelastic)
 - ILC: 'One Higgs per 100 collision' (collision: qq production)
- Pileup
 - LHC: O(10-100) per bunch
 - ILC: 1.2 forward low energy jets in 500 GeV
- Radiation
 - LHC: ~ 30 kGy, 5 x 10^{13} n_{eq} / year at 50 mm from IP
 - ILC: ~ 1 kGy, $10^{11} n_{eq}$ / year at 16 mm from IP
- Trigger
 - ILC: triggerless

Radiation & rate tolerance is less important in ILC \rightarrow emphasis on resolution

ILC detectors

International Large Detector (ILD)

Common features: •Low-mass small pixel vertex detector •Low-mass silicon tracking •Fine-granular ECAL/HCAL inside coil •Muon detector •Forward tracker/calorimeter

Silicon Detector (SiD)

Different features: •Size (SiD: smaller) •Magnetic field (3.5T/5T) •Main tracker TPC(ILD) Silicon only(SiD)

Detector for Particle Flow

Track-cluster matching 1 by 1 \rightarrow Particle flow

Advantages: ~60% of particles in jet are charged hadrons (π/K): use track momentum for them instead of HCAL Neutral hadrons (K⁰/n) are only ~10%
 Requirements: Finely granular calorimeter to separate each → very precise cells (O(1 cm)) in calorimeters
 Taikan Suehara, 37th International Conference on High Energy Physics, 5 July 2014 page 7

ILC detector challenges

- 1. Precise determination of track origin
 - Vertex detector
- 2. Momentum resolution of tracks
 - Main tracker
- 3. Jet energy resolution
 - Calorimeter

Physics requirements should drive the optimization

Detector costs

ILD: 391 M ILCU (US\$ Jan.2012)

ILC Acc.: 7800 M ILCU SiD: 314 M US\$ (wo/ contingency & inflation)

ILC detector challenges

- 1. Precise determination of track origin
 - Vertex detector
- 2. Momentum resolution of tracks
 - Main tracker
- 3. Jet energy resolution
 - Calorimeter

Physics with track pointing

Hbb, Hcc, Hgg coupling

Higgs self coupling

 H → cc heavily depends on c-tagging performance

500 GeV (ZHH) 1 TeV (vvHH)

- 4b/2b separation is critical to suppress background
- High purity b-tag

Tau & metastable BSM

Physics case is very clear Flavor tagging heavily depends on software – optimization not easy

ILC Vertex Detector

5-6 layers at r ~ 15 to 60 mm (cf. CMS at 44 to 102 mm)
All pixels (5-25 μm, depending on technology)
•Good point resolution (esp. for c-tagging)
•Low material budget
•Pair background
(overlaid low energy e⁺e⁻ pairs by beam)

Fast readout or BX tagging

Readout between trains or # BX added to hits \rightarrow reduce/separate pairs

Granular technology

Smaller pixels to reduce occupancy Slow readout between trains Taikan Suehara, 37th International Conference on High Energy Physics, 5 July 2014 page 12

Vertex detector: ILC technologies

Fast readout technologies

$20 \ \mu m \ CMOS$

Time stamping

Chronopixel

Granular technology

DEPFET

Fine Pixel CCD

Performance comparison

Good d_0/z_0 resolution

Pair background

ILC detector challenges

- 1. Precise determination of track origin
 - Vertex detector

2. Momentum resolution of tracks

- Main tracker
- 3. Jet energy resolution
 - Calorimeter

Main tracker – physics caseHiggs recoil measurementsSUSY: NLSP/LSP degenerated

Main tracker – TPC vs silicon only

ILD: Time Projection Chamber SiD: Silicon strip only (5 layers)
+ inner silicon (2 layers)
+ outer silicon (2 layers) (+ 5-6 layers of vertex detector

for both ILD & SiD)

3.5 Tesla, r_{max} ~ 1800 mm 5 Tesla, r_{max} ~ 1220 mm Taikan Suehara, 37th International Conference on High Energy Physics, 5 July 2014 page 17

Main tracker – resolution & material p_T resolution: ILD better in low pT, SiD high pT TPC (ILD): ^{-10t} /GeV⁻¹ / p_T² [GeV⁻¹] •dE/dx for K/ π • $\theta = 7^{\circ}$ Single µ θ = 20° = 4.17E-04 $\theta = 10^{\circ}$ = 5 41E-03 $\theta = 40^{\circ}$ 10⁻² ----θ = **30**° θ = 85° separation __θ = 90°

10

2 37E-05

p [GeV]

100

1000

material: similar in barrel, SiD better in endcap

10

Momentum/GeV

) (^Ld)⁻³

10⁻⁴

 10^{-5}

Sil

10⁻³

10⁻⁴

10⁻⁵

10

Silicon only (SiD):
More robust for dense-track reconstruction

hysics, 5 July 2014 page 18

Optimization of parameters

Mass resolution is affected by B & r, for cross section not clear

Ily 2014 page 19

ILC detector challenges

- 1. Precise determination of track origin
 - Vertex detector
- 2. Momentum resolution of tracks
 - Main tracker
- 3. Jet energy resolution
 - Calorimeter

Calorimeter: physics

Invisible Higgs decay

Others: jet resolution •qqH, total cross section •precise W/Z coupling by evW/vvZ •ZHH/vvHH and other multi-jet physics: (jet clustering dominates)

Others: non-jet states, (less considered) •Higgs CP by $H \rightarrow \tau \tau$ • $H \rightarrow \gamma \gamma$ •new physics, non-pointing photons etc.

Important, but we need a trade-off with cost

ILC Calorimeter

 \bullet

•

30 %/ $\sqrt{E_j}$ obtained for $E_j < 100 \text{ GeV}$ (50 %/ $\sqrt{E_j}$ expected without PFA)

Sandwich calorimeter ECAL: ~ 30 layers, W absorber (baseline: Silicon sensor for both ILD/SiD) HCAL: 40-50 layers, Fe absorber (baseline: Scintillator(ILD) or RPC(SiD)) Highly granular cells ECAL: ~ 5 mm HCAL: 1-3 cm cells (in baseline options) ASICs/electronics between layers

ECAL inner radius ECAL # layers

Smaller radius, fewer layers
→ big cost advantage,
but performance degraded
How much is allowed – physics

Many parameters: difficult to optimize

Scintillator strip + SiPM or Si/Sc hybrid option big cost advantage energy resolution similar, but more complexity Energy Physics, 5 July 2014 page 23

Sensor & readout technologies

Hexagonal design for Si-ECAL

RPC digital-HCAL (1- and 2-glass)

Scintillator-tile analog HCAL

Readout of HCAL

- Analog with 3 x 3 cm²
- Semi-digital (2-bit) or Digital with 1 x 1 cm²
- → similar performance? need detailed study

Muon & forward detectors

Muon detector: sandwiched in return yoke (outside of coil)

Forward tracking ILD: $\cos\theta < 0.996$ (outer discs) SiD: $\cos\theta < 0.990$ (forward discs)

LumiCal (W/Silicon) / LHCal (?) ILD: 31-77 mrad SiD: 40-90 mrad

BeamCal (GaAs or CVD) ILD/SiD: 7-40 mrad

Powerful for rejecting beam backgrounds (two-photon, beamstrahlung)

Summary, towards optimal ILD/SiD

- Vertex: Critical. Must maximize performance. Pair background should be competed.
- Tracker: moderate requirements on resolution, should keep low momentum tracking to maximize new physics reach.
- Calorimeter: Cost driver. consider slightly weaker performance. options available.

Careful treatment of software and physics necessary to assure reliability of estimation. Optimization based on physics performance ongoing, to be concluded towards detector TDR(s) in a few years.

ILC Physics Program

Higgs recoil measurements

Key for model-independent Higgs coupling & precise m_H determination Momentum resolution of tracks (e/μ) essential

qqH, H → invisible: Jet energy resolution essential ance on High Energy Physics, 5 July 2014 page 28

Higgs as a probe for New Physics

Higgs CP via H $\rightarrow \tau \tau$

Higgs self coupling

500 GeV (ZHH) 1 TeV (vvHH)

Need full reconstruction of energetic tau \rightarrow particle separation at ECAL essential

HH \rightarrow 4b: golden mode b-tagging performance essential jet clustering more important Taikan Suehara, 37th International Conferenc than jet energy resolution

Soft SUSY: NLSP/LSP degenerated

Precise measurements: •Gauge 3-point /4-point coupling

Natural for Higgsino LSP Low momentum tracking + forward coverage for ISR

Performance Requirements

- 1. Point resolution by vertex detector
 - Flavor tagging for Higgs BR, self coupling etc.
 - Tau reconstruction, metastables etc.
- 2. Momentum resolution of tracks
 - Higgs recoil mass
 - Low momentum tracking for new physics
- 3. Jet energy resolution by PFA
 - Higgs invisible, precise measurements
- 4. Forward tagging
 - New physics

Backup

Vertex detector: geometry

ILD: 3 double layers (reference)

3 double layers:
Mechanically rigid
discrimination of pairs
by hit shape of two layers
5 single layers:
More space points

SiD: 5 single layers

radius of layers •SiD: 14-60 mm •ILD: 15-60 mm

Inner \rightarrow better resolution but more pairs (esp. in higher E)

Different setup in 250/500?

Readout, analog, semi- or digital

ECAL Silicon (ILD/SiD, baseline) – Analog, 13 or 25 mm² Scintillator (ILD, option) – Analog, 5 x 45 mm² ILD/SiD MAPS (premature option) – Digital, 50 x 50 μm²

HCAL ILD Scintillator – Analog, 3 x 3 cm² ILD GRPC – 2bit, 1 x 1 cm² SiD RPC – Digital, 1 x 1 cm²

