

Invisible Higgs

Using a Physics Analysis to Quantify Impact of Jet Energy Resolution

Kelvin Mei

University of Cambridge

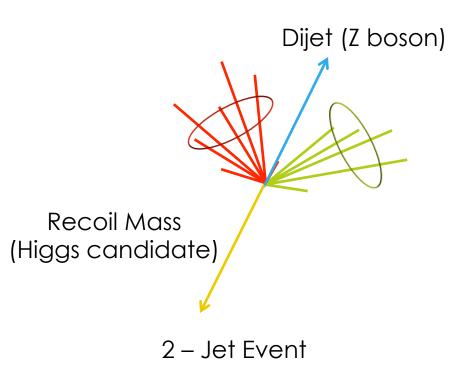
16 Jul 2014

Outline

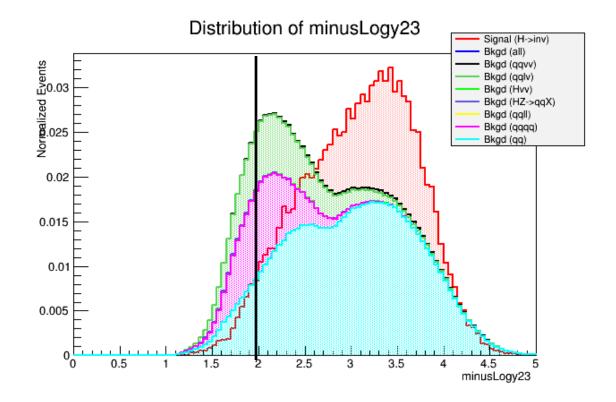
- Introduction to Invisible Higgs
- Preselection and TMVA Results
- Optimization Settings
- Results of Optimization
- Conclusion

Introduction to Invisible Higgs

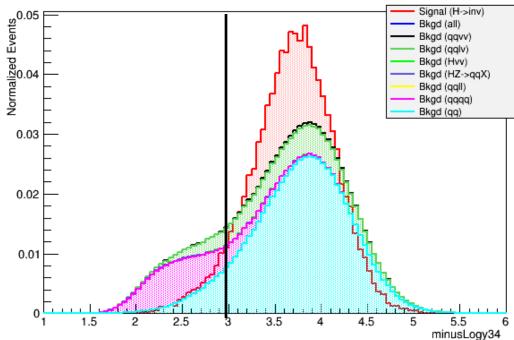
Invisible Higgs Events


- **350 GeV** e^+e^- collisions
- Detector Model: ILD_01_v05
- Signal: Higgsstrahlung events with final state of two jets + missing energy
- Background
 - Other HZ events (WW, ZZ, $\gamma \gamma, \tau \tau$)
 - 4 Jet and 2 Jet SM events

Event Analysis


- Used Pandora/FastJet to process event into 2, 3, 4, 5, and 6 jet topologies with R = 1.5
- Two jets most consistent with the Z mass is chosen as the dijet mass
- Invariant mass of the system recoiling against this dijet is measured (taking into account crossing beam angle)
- Theoretically, in Higgsstrahlung events, this recoil in the 2 jet topology is the Higgs candidate

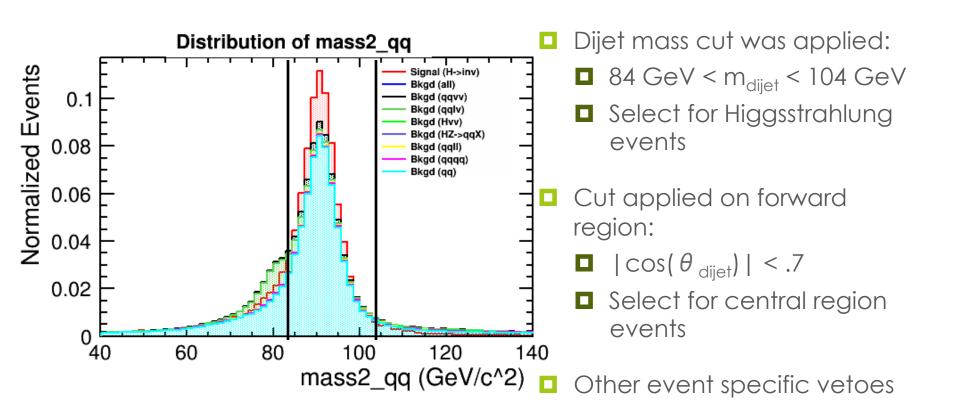
ILC: Event Preselection


- If event looks like a 2 jet event:
 - Invisible Higgs analysis
- If event looks like a more than 2 jet event:
 - Visible Higgs analysis

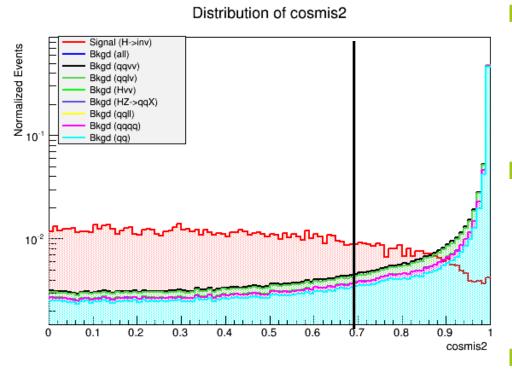
ILC: Event Preselection

Distribution of minusLogy34

- If event looks like a 2 jet event:
 - Invisible Higgs analysis
- If event looks like a more than 2 jet event:
 - Visible Higgs analysis



Preselection and TMVA Results


ILC: Rectangular Cuts

ILC: Rectangular Cuts

- Dijet mass cut was applied:
 - 84 GeV < m_{dijet} < 104 GeV</p>
 - Select for Higgsstrahlung events
- Cut applied on forward region:
 - $\square |\cos(\theta_{dijet})| < .7$
 - Select for central region events

Other event specific vetoes

TMVA

Variable Name	Description of Variable
m_{recoil}	mass of the recoil
m_{dijet}	mass of the dijet
$cos(heta_Q)$	cosine of the decay angle of the jets in the rest frame
$p_T(dijet)$	transverse momentum of the Z boson
$cos(heta_{mis})$	cosine of the polar angle of the missing momentum vector
$-log_{10}(y_{23})$	measure of how likely the event is a 2 or 3 jet event
$e_{visible}$	amount of visible energy measured in the event

- Multivariate Analysis (BDT) used to further separate signal and background
- Final list of variables obtained by starting with a larger sample size and then eliminating ones that did not affect significance

TMVA Efficiencies

Table 1: Si	gnal and Backgr	ound Efficie	ncy for ILC	2	
Channel	Cross Section	$\epsilon_{preselection}$	$\epsilon_{BDT>.13}$	Events Remaini	ng
$e^+e^- \rightarrow q\bar{q}$	29658	< 0.1%	< 0.1%	0.3	
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	5514	< 0.1%	< 0.1%	0	
$e^+e^- o q\bar{q}\nu\nu$	324.2	16.6%	0.8%	1306.7	
$e^+e^- ightarrow q \bar{q} l \nu$	5738	0.3%	< 0.1%	212.8	
$e^+e^- \rightarrow q\bar{q}ll$	590.2	< 0.1%	< 0.1%	0.7	
$e^+e^- \to H \nu \nu$	52.3	5.1%	0.1%	22.0	
HZ (Standard Model)	93.8	< 0.1%	< 0.1%	4.4	
$H \rightarrow inv$	100%	41.1%	19.5%	9162.6	
$H \to q \bar{q}$		< 0.1%	< 0.1%	0	
$H \to ZZ^*$		0.5%	< 0.1%	0.2	$\Lambda \sim \sqrt{1}$ back
$H \to \gamma \gamma$		< 0.1%	< 0.1%	0	$\Delta O = \frac{1}{2}$
$H \to \tau \tau$		0.7%	0.1%	2.5	N . 100 σ
$H \to Z\gamma$		1.0%	< 0.1%	0	- + sig,100%
$H \to \mu^+ \mu^-$		< 0.1%	< 0.1%	0	
$H \to WW^*$		0.2%	< 0.1%	1.7	
$H \to WW^* \to l\nu l\nu$		0.5%	< 0.1%	0.1	$\overline{\Delta}\sigma = .43\%$
$H \to WW^* \to l \nu \tau \nu$		1.1%	0.1%	0.5	$\Delta 0 = .4370$
$H \to WW^* \to \tau \nu \tau \nu$		4.9%	1.0%	1.1	
$H \to WW^* \to q\bar{q}l\nu$		< 0.1%	< 0.1%	0.0	
$H \to WW^* \to q\bar{q}\tau\nu$		0.1%	< 0.1%	0.0	
$H \to WW^* \to q\bar{q}q\bar{q}$		< 0.1%	< 0.1%	0.0	

TMVA Efficiencies

Table 1: Sig	nal and Backgro	ound Efficien	cy for CLI	С	
Channel	Cross Section	$\epsilon_{preselection}$	$\epsilon_{BDT>.09}$	Events Remainin	g
$e^+e^- \rightarrow q\bar{q}$	25180	< 0.1%	< 0.1%	0	
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	5847	< 0.1%	< 0.1%	0	
$e^+e^- o q\bar{q}\nu\nu$	324.6	16.8%	1.9%	2980.3	
$e^+e^- ightarrow q\bar{q} l \nu$	5914	0.7%	< 0.1%	613.67	
$e^+e^- ightarrow q \bar{q} l l$	1704	< 0.1%	< 0.1%	1.7	
$e^+e^- \to H \nu \nu$	51.5	5.3%	0.2%	63.6	
HZ (Standard Model)	93.5	0.2%	< 0.1%	18.8	
$H \rightarrow inv$	100%	41.1%	22.8%	10663.2	
$H \to q \bar{q}$		< 0.1%	< 0.1%	0	
$H \to ZZ^*$		2.4%	1.1%	13.9	
$H \to \gamma \gamma$		< 0.1%	< 0.1%	0	
$H \to \tau \tau$		0.7%	0.1%	2.2	
$H \to Z\gamma$		1.0%	< 0.1%	0	
$H ightarrow \mu^+ \mu^-$		< 0.1%	< 0.1%	0	
$H \to WW^*$		0.2%	< 0.1%	2.7	
$H \to WW^* \to l\nu l\nu$		0.6%	< 0.1%	0.1	$\frac{1}{1}$ 570/
$H \to WW^* \to l \nu \tau \nu$		1.7%	0.3%	1.5 /	$\Delta \sigma = .57\%$
$H \to WW^* \to \tau \nu \tau \nu$		6.0%	0.8%	1.0	
$H \to W W^* \to q \bar{q} l \nu$		< 0.1%	< 0.1%	0	
$H \to WW^* \to q\bar{q}\tau\nu$		0.2%	< 0.1%	0.1	
$H \to WW^* \to q\bar{q}q\bar{q}$		< 0.1%	< 0.1%	0	

Optimization Settings

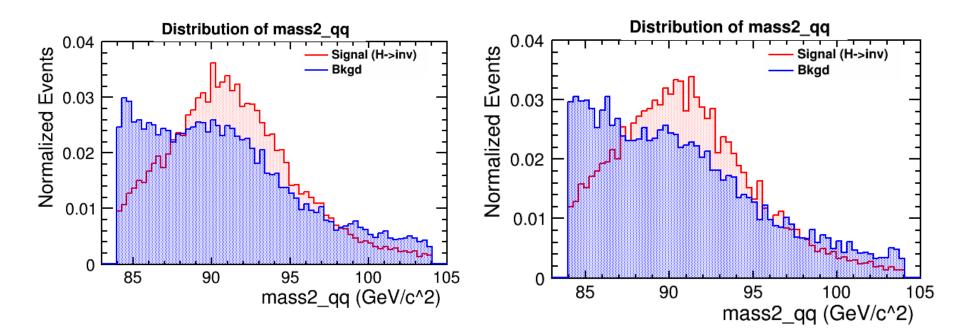
Basic Settings

- ILCsoft Version: v01-16-p09_350 -> same as Akiya used for his generation
- □ STDHEP files used are located at:
 - /ilc/prod/ilc/mc-dbd/generated/350-TDR_ws/
- Marlin Reconstuction Steer File:
 - PandoraSettingsDefault.xml

Changes Made

Parameters changed:

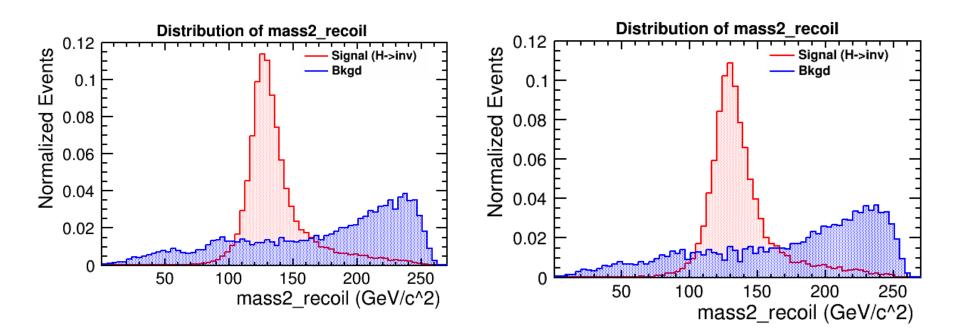
- Mokka Global Model Parameter:
 - Ecal_cells_size 15.0 (mm)
- PandoraLikelhoodData9EBin.xml -> used svn copy
- Re-run with only the qql ν and qq ν ν backgrounds -> dominant backgrounds in both original studies
- Distributions of variables are in the appendix



Variable Distributions: mass2_qq

SiW: 5X5

SiW: 15X15



Variable Distributions: mass2_recoil

SiW: 5X5

SiW: 15X15

Results of Optimization

Pre-selection

ILC (ECal = 5 mm)

Event Type	N_start	N_after
Signal (HZ->inv)	46861.3	19284.1 (41.2%)
BKGD: qqvv	161127	26753 (16.6%)
BKGD: qqlv	2799670	9477.3 (0.3%)

Self GEN ILC (ECal = 15 mm)

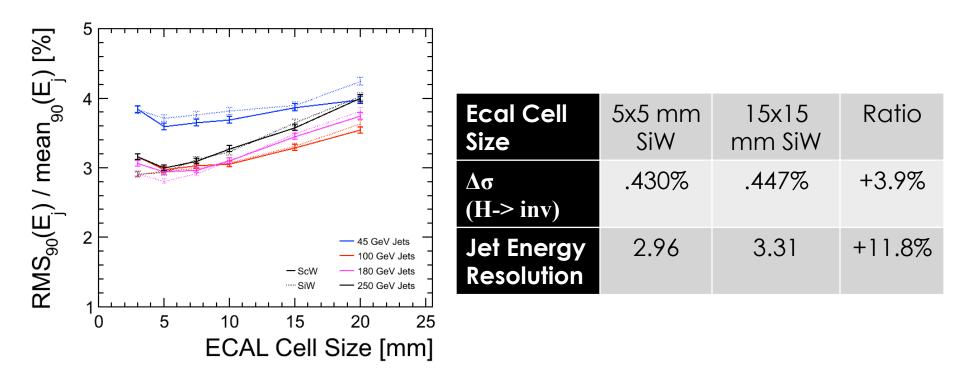
Event Type	N_start	N_after
Signal (HZ->inv)	46821.1	18790.6 (40.1%)
BKGD: qqvv	161129	26302.2 (16.3%)
BKGD: qqlv	2807790	9977.3 (0.4%)

ILC (ECal = 5 mm)

Event Type	N_start	N_after	
Signal (HZ->inv)	46861.3	10177.4 (21.7%)	
BKGD: qqvv	161127	1644.47 (1.0%)	Δσ
BKGD: qqlv	2799670	270.03 (0.01%)	:

Self GEN ILC (ECal = 15 mm)

	1	1	
Event Type	N_start	N_after	
Signal (HZ->in∨)	46821.1	9792.1 (20.9%)	
BKGD: qqvv	161129	1645.8 (1.0%)	L
BKGD: qqlv	2807790	282.7 (0.01%)	


 $\Delta \sigma = .430 \pm .022\%$

 $\Delta \sigma = .447$ $\pm .010\%$

Connection to Jet Energy Resolution

Taken from John Marshall

Conclusions

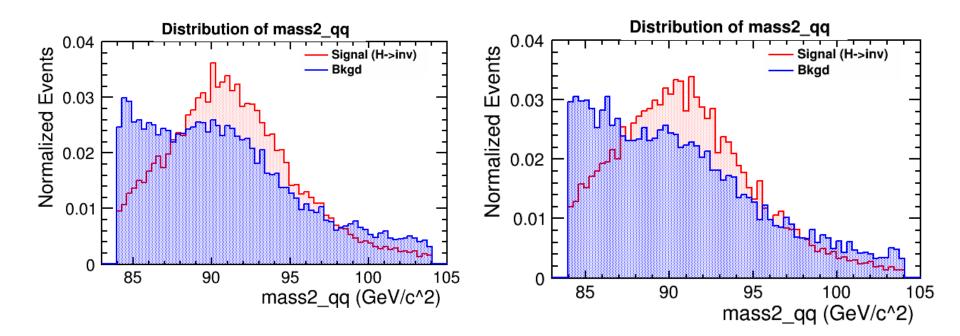
Conclusions

- Based on the Invisible Higgs Analysis, changing the cell size for the electronic calorimeter, and hence degrading jet resolution measurements, has an adverse impact on the end result.
- Start of a study to potentially continue to link jet resolution with physics results.

ILC: Event Specific Vetoes

- Standard Model WW -> qqlv events:
 - Presence of a very energetic lepton in a jet that has few particles
 - Ntracks_3 < 4 && Elepton_3 > 25
- Standard Model ZZ events (low transverse momentum (pT < 25 GeV)):</p>
 - If in the 4-jet topology, there are two Z candidates in the jets
 - mass4w_dijet > 80 && mass4w_dijet < 100</p>
 - mass4w_other > 80 && mass4w_other < 100</p>
- Standard Model qq events (low transverse momentum (pT < 25 GeV)):</p>
 - The event looks significantly more like a 4-jet event than a 3-jet event
 - minusLogy34 > 3.0

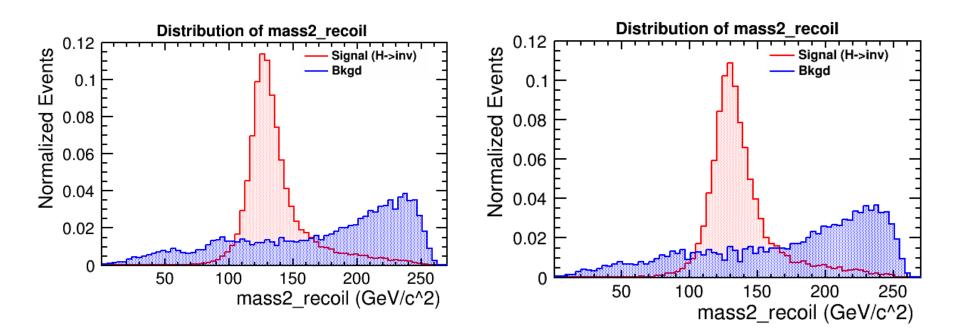
- Standard Model WW events (low transverse momentum (pT < 25 GeV)):
 - If in the 4-jet topology, there are two W candidates in the jets
 - mass4w_dijet > 70 && mass4w_dijet < 90</p>
 - mass4w_other > 70 && mass4w_other < 90</p>
 - If in the 3-jet topology, there is one W candidate, and the recoil is within the W range (any pT)
 - mass3w_qq > 70 && mass3w_qq < 90</p>
 - mass3w_recoil > 60 && mass3w_recoil < 140</p>



Variable Distributions: mass2_qq

SiW: 5X5

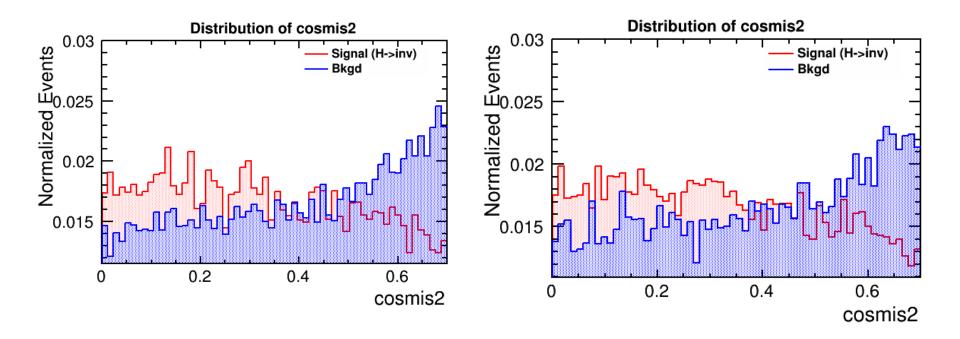
SiW: 15X15



Variable Distributions: mass2_recoil

SiW: 5X5

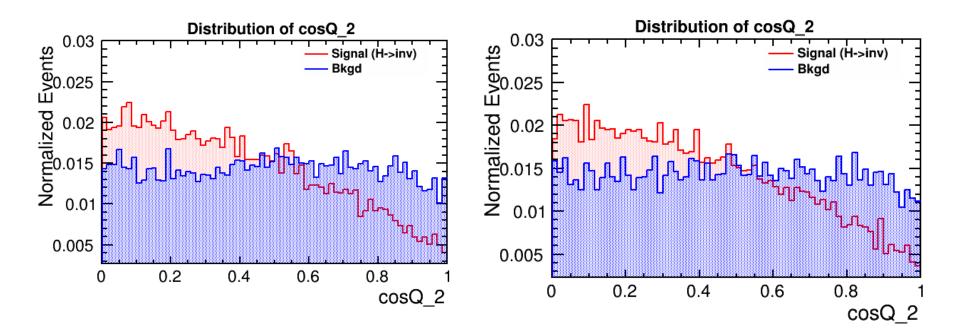
SiW: 15X15



SiW: 15X15

Variable Distributions: cosmis2

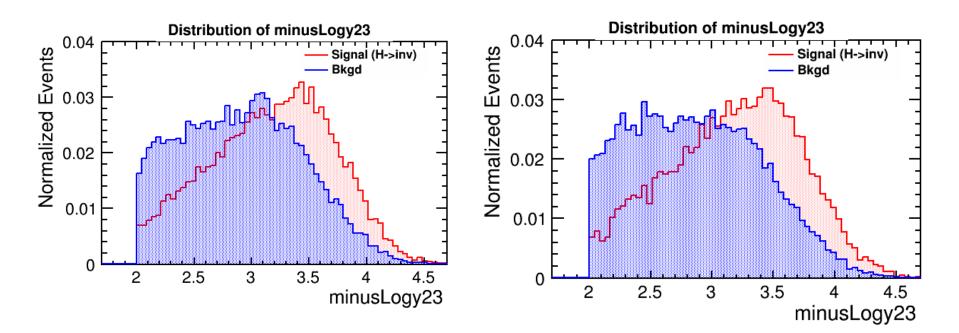
SiW: 5X5



Variable Distributions: cosQ_2

SiW: 5X5

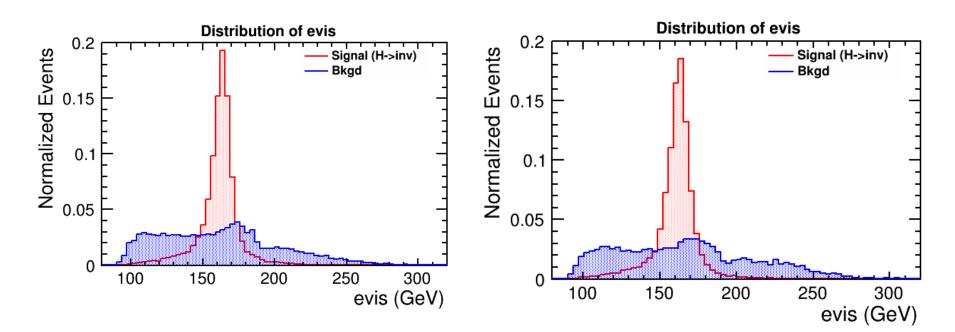
SiW: 15X15



Variable Distributions: -log(y23)

SiW: 5X5

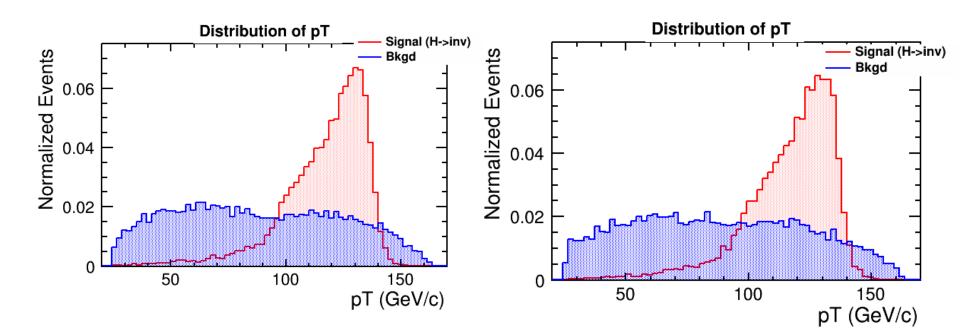
SiW: 15X15



Variable Distributions: evis

SiW: 5X5

SiW: 15X15



Variable Distributions: pT

SiW: 5X5

SiW: 15X15

