Higgs Self-Coupling Measurement at the ILC.

${\sf Claude-Fabienne}\ {\sf D\"urig}^1,\ {\sf Junping}\ {\sf Tian}^2,\ {\sf Jenny}\ {\sf List}^1,\ {\sf Keisuke}\ {\sf Fujii}^2$

 1 DESY Hamburg, Germany 2 KEK, Japan

ILD Analysis and Software meeting, 23.07.2014

- > Higgs self-coupling analysis with new Higgs mass $m_{\rm H} = 125~{\rm GeV}$ samples
- > ZHH at $\sqrt{s} = 500 \text{ GeV}$, assuming $\mathcal{L} = 2 \text{ ab}^{-1}$
- > beam polarisation $P(e^+, e^-) = (0.3, -0.8)$
- > analysis strategy identical to LC-REP-2013-003 by Junping Tian
- > new: consider low- $p_T \gamma \gamma \rightarrow$ hadrons beam induced background
- status update of analysis presented at AWLC 2014

Higgs self-coupling for $m_H = 120$ GeV: 44% extrapolation to $m_H = 125$ GeV: 53% Higgs self-coupling for $m_H = 125$ GeV without overlay: 52% with overlay: 59.4%

> today: update on overlay removal $\longrightarrow \nu\nu HH$ search channel

Analysis strategy $e^+e^- \rightarrow ZHH$ at $\sqrt{s} = 500$ GeV

Perform analysis for $m_H = 125 \text{ GeV}$ without and with overlay and investigate the differences

analysis strategy identical to LC-REP-2013-003

NEW low $p_T \gamma \gamma \rightarrow$ hadrons background

> virtual photons which got radiated off the primary beam electrons

> real photons due to bremsstrahlung and synchrotron radiation

Event selection:

- isolated lepton selection or rejection
- 2 $\gamma\gamma$ -overlay removal
- 3 cluster particles into jets and get flavor tag information
- 4 pair jets to form signal bosons
- 6 each dominant background is suppressed by training a separate neural net

Removal of low-p_T $\gamma\gamma ightarrow$ hadrons background

low- $p_T \gamma \gamma \rightarrow$ hadrons overlaid events per interaction:

 $< N_{\gamma\gamma} >= 1.7$

(ILD/SiD standard, but overestimated)

apply FastJetClustering: k_TExclusiveNJets which R-value?

- ▶ for R ≥ 1.2 almost no increase in signal efficiency but in overlay
- > best recovery of bare evts R = 1.3
- use only reconstructed particles in the clustered jets for analysis

'Old' results and status of analysis

measurement at \sqrt{s} =500 GeV, \mathcal{L} =2 ab^{-1} and $\mathsf{P}(e^+e^-)$ = (0.3,-0.8)

preliminary results for 'no overlay' case:

modes	signal	background	significance		
			excess	measurement	
$ZHH \rightarrow I^{-}I^{+}HH$	3.0	4.3	1.16σ	0.91σ	
	3.3	6.0	1.12σ	0.91σ	
$ZHH \to \nu \bar{\nu} HH$	5.4	7.0	1.72σ	1.45σ	
ZHH ightarrow q ar q HH	9.1	21.3	1.78σ	1.61σ	
	9.0	34.7	1.41σ	1.30σ	

significance: 3.8σ

 $\frac{\delta \sigma_{\text{ZHH}}}{\sigma_{\text{ZHH}}} = 32.6\%$

Higgs self-coupling: $\frac{\delta\lambda}{\lambda} = 52.5\%$

preliminary results for 'overlay' case:

modes	signal	background	significance			
			excess	measurement		
$ZHH \rightarrow I^{-}I^{+}HH$	2.4	4.0	0.94σ	0.72σ		
	3.2	7.0	1.01σ	0.83σ		
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	3.8	4.0	1.53σ	1.22σ		
ZHH ightarrow q ar q HH	8.3	22.3	1.59σ	1.44σ		
	8.7	39.3	1.29σ 1.19σ			

significance: 2.9σ

cross-section: $\frac{\delta \sigma_{ZHH}}{\sigma_{ZHH}} = 36.2\%$

Higgs self-coupling: $\frac{\delta\lambda}{\lambda} = 59.4\%$

- three neural nets: bbbb, lvbbqq, vvbbbb
- visible energy input variable for bbbb vs signal

shift to higher visible energies for signal in overlay case?

 \succ just for signal sample? \longrightarrow check other samples \checkmark

bbbb vvbb lvbbqq vvqqh vvbbbb bbqqqq

➤ overlay removal before/after isolated lepton finding? ✔

- ➤ FastJetClustering → correct R-value? ✓
- FastJetClustering Number of jets?

Example distribution

Claude Fabienne Dürig | Higgs self-coupling at ILC | ILD Analysis and Software meeting, 23.07.2014 | 7/10

eV] 0 DESY

neutrino channel: optimised cuts

optimised with overlay

cut1:

$$\begin{split} E_{vis} &< 362 \; {\rm GeV} + 0.83 \cdot P_t^{miss} \text{,} \\ M_Z &< 60 \; {\rm GeV} \end{split}$$

cut2:

$$\begin{split} &\mathsf{npfos}_{\mathsf{m}in} > 8, \\ &\mathsf{M}(\mathsf{HH}) < 217 \; \mathrm{GeV}, \\ &99 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 146 \; \mathrm{GeV}, \\ &91 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H2}) < 139 \; \mathrm{GeV} \end{split}$$

- ➤ cut3: MVAbbbbb > 0.90
- > cut4: MVAlvqqqq > 0.74
- cut5: MVAvvbbbb > 0.31
- cut6: bmax3 + bmax4 > 1.08

optimised without overlay

> cut1:

$$\begin{split} E_{vis} &< 364 \; {\rm GeV} + 0.83 \cdot P_t^{miss} \text{,} \\ M_Z &< 60 \; {\rm GeV} \end{split}$$

> cut2:

$$\begin{split} npfos_{min} &> 5, \\ \mathsf{M}(\mathsf{HH}) &< 238 \; \mathrm{GeV}, \\ 101 \; \mathrm{GeV} &< \mathsf{M}(\mathsf{H1}) < 139 \; \mathrm{GeV}, \\ 89 \; \mathrm{GeV} &< \mathsf{M}(\mathsf{H2}) < 135 \; \mathrm{GeV} \end{split}$$

- ➤ cut3: MVAbbbb > 0.86
- > cut4: MVAlvqqqq > 0.72
- > cut5: MVAvvbbbb > 0.48
- > cut6: bmax3 + bmax4 > 1.08

without overlay

	vvbb	evbbqq	μvbbqq	τνbbqq	bbqqqq	bbbb	$\nu\nu$ bbbb	vvqqh	bgrd	signal (vv4b)
expected	272802	248454	245936	245708	624060	40234.3	97.1	447.0	$1.7\cdot 10^6$	80.1
preselection	951.2	1677.9	1410.3	36246.8	62172.9	30830.4	82.2	71.0	133443	28.3 (22.6)
	994.5	2018.2	1670.4	39845.2	71838.3	30835.5	81.5	74.9	147358	28.5 (22.4)
cut1	908.3	837.4	825.6	24231.6	1382.8	3934.9	80.7	68.9	32270.2	27.5 (21.9)
	869.8	961.2	916.2	25059.5	2368.9	3894.1	78.7	69.9	34218.5	27.4 (21.5)
cut2	16.5	203.9	209.6	5315.7	257.6	376.3	8.1	18.8	6406.6	16.5 (14.5)
	11.7	281.5	291.2	6459.3	697.6	498.2	12.1	23.5	8275.1	16.3 (14.3)
cut3	8.4	171.5	175.2	4286.4	87.9	11.7	4.8	14.5	4760.6	14.2 (12.5)
	5.5	226.6	223.5	4910.7	153.6	10.8	7.5	18.2	5556.7	13.3 (11.7)
cut4	3.5	29.1	38.8	511.2	32.2	6.4	2.8	6.7	630.8	10.8 (9.8)
	4.9	37.1	44.6	606.7	46.6	5.8	4.1	8.1	758.2	11.3 (10.1)
cut5	2.1	23.9	32.9	430.8	31.6	5.9	1.3	4.5	533.3	9.7 (8.7)
	4.9	37.1	34.9	523.9	45.9	5.1	2.1	6.0	653.5	10.6 (9.5)
cut6	0	0.2	0.3	1.5	0	2.6	0.6	1.7	6.9	5.2 (5.1)
	0	0	0	3.6	0	2.2	0.9	2.1	9.0	5.6 (5.5)

Results and current status of analysis

measurement at \sqrt{s} =500 GeV, \mathcal{L} =2 ab^{-1} and $\mathsf{P}(e^+e^-)$ = (0.3,-0.8)

preliminary results for 'no overlay' case:

modes	signal	background	significance		
			excess	measurement	
$ZHH \rightarrow I^{-}I^{+}HH$	3.0	4.3	1.16σ	0.91σ	
	3.3	6.0	1.12σ	0.91σ	
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	5.2	6.9	1.63σ	1.37σ	
	5.4	7.0	1.72σ	1.45σ	
m ZHH ightarrow q ar q HH	9.1	21.3	1.78σ	1.61σ	
	9.0	34.7	1.41σ 1.30σ		

significance: 3.74σ

cross-section: $\frac{\delta \sigma_{\text{ZHH}}}{\sigma_{\text{ZHH}}} = 32.8\%$

Higgs self-coupling: $\frac{\delta\lambda}{\lambda} = 53.8\%$

preliminary results for 'overlay' case:

modes	signal	background	significance			
			excess	measurement		
$ZHH \rightarrow I^{-}I^{+}HH$	2.4	4.0	0.94σ	0.72σ		
	3.2	7.0	1.01σ	0.83σ		
${\sf ZHH} \to \nu \bar{\nu} {\sf HH}$	5.6	9.0	1.45σ	1.23σ		
	3.8	4.0	1.53σ	1.22σ		
m ZHH ightarrow q ar q HH	8.3	22.3	1.59σ	1.44σ		
	8.7	39.3	1.29σ 1.19σ			

significance: 3.36σ

 $\frac{\delta \sigma_{\text{ZHH}}}{\sigma_{\text{ZHH}}} = 35.6\%$

```
Higgs self-coupling: \frac{\delta\lambda}{\lambda} = 58.4\%
```


BACKUP SLIDES

Claude Fabienne Dürig | Higgs self-coupling at ILC | ILD Analysis and Software meeting, 23.07.2014 | 11/10

neutrino channel: old optimised cuts

optimised with overlay

cut1:

$$\begin{split} E_{vis} &< 372 \; {\rm GeV} + 0.83 \cdot P_t^{miss} \text{,} \\ M_Z &< 60 \; {\rm GeV} \end{split}$$

cut2:

```
\begin{split} &\mathsf{npfos}_{min} > 10, \\ &\mathsf{M}(\mathsf{HH}) < 200 \; \mathrm{GeV}, \\ &103 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H1}) < 141 \; \mathrm{GeV}, \\ &103 \; \mathrm{GeV} < \mathsf{M}(\mathsf{H2}) < 136 \; \mathrm{GeV} \end{split}
```

- ▶ cut3: MVAbbbb > 0.93
- cut4: MVAlvqqqq > 0.73
- ➤ cut5: MVAvvbbbb > 0.3
- > cut6: bmax3 + bmax4 > 1.1

optimised without overlay

> cut1:

$$\begin{split} E_{vis} &< 364 \; {\rm GeV} + 0.83 \cdot P_t^{miss} \text{,} \\ M_Z &< 60 \; {\rm GeV} \end{split}$$

> cut2:

$$\begin{split} npfos_{min} &> 6, \\ M(HH) < 200 \ {\rm GeV}, \\ 100 \ {\rm GeV} < M(H1) < 139 \ {\rm GeV}, \\ 91 \ {\rm GeV} < M(H2) < 134 \ {\rm GeV} \end{split}$$

- ➤ cut3: MVAbbbb > 0.93
- > cut4: MVAlvqqqq > 0.66
- ➤ cut5: MVAvvbbbb > 0.56
- > cut6: bmax3 + bmax4 > 1.08

without overlay

with overlay

	vvbb	evbbqq	$\mu\nu bbqq$	$\tau\nu bbqq$	bbqqqq	bbbb	$\nu\nu$ bbbb	vvqqh	bgrd	signal (vv4b)
expected	272802	248454	245936	245708	624060	40234.3	97.1	447.0	$1.7\cdot 10^6$	80.1
preselection	545.4	1787.7	1480.9	37410.7	65529	31292	81.9	72.3	138200	28.5 (22.7)
	992.8	1996.6	1661.7	38659.3	69698	30922	80.9	74.6	144086	28.4 (22.4)
cut1	481.0	894.1	867.4	25002.4	1443.6	3943.2	80.5	70.1	32782.4	27.7 (22.0)
	862.4	989.7	929.3	24532.0	1247.8	3552.6	77.8	69.2	32260.9	26.6 (20.9)
cut2	6.7	208.0	225.3	5161.1	252.8	382.9	9.7	19.6	6266.3	16.8 (14.8)
	5.6	163.7	154.3	2951.7	270.5	211.5	4.8	8.6	3770.8	11.6 (10.4)
cut3	4.3	181.5	196.8	4325.4	121.6	13.3	6.4	15.9	4865.2	14.9 (13.1)
	2.4	110.9	112.1	1938.3	61.7	4.1	2.4	6.4	2238.4	8.6 (7.7)
cut4	4.3	34.5	45.3	602.9	42.8	7.7	4.1	8.5	750.3	11.8 (10.6)
	2.4	44.1	45.8	624.5	38.0	3.3	1.9	4.7	764.7	7.5 (6.8)
cut5	3.1	24.9	35.1	454.7	41.9	6.5	1.4	4.4	527.0	9.9 (8.9)
	2.4	37.3	39.8	568.3	36.9	3.1	1.3	4.1	693.3	7.1 (6.4)
cut6	0	0	0	1.6	0.1	3.0	0.6	1.7	7.0	5.4 (5.3)
	0	0	0	0.6	0.1	1.3	0.6	1.4	4.0	3.8 (3.8)

Excess and measurement significance

excess significance: assuming there is no signal, the probability of observing events equal or more than the expected number of events $(N_S + N_B)$

$$p = \int_{N_S + N_B}^{\infty} f(x; N_B) dx$$

in case of large statistics: $\frac{N_S}{\sqrt{N_B}}$

measurement significance: assuming signal exists, the probability of observing events equal or less than the expected number of background events (N_B)

$$p=\int\limits_{-\infty}^{N_B}f(x;N_S+N_B)dx$$
 n case of large statistics: $\frac{N_S}{\sqrt{N_S+N_B}}$

convert to gaussion significance (s):

i

$$1 - p = \int_{-\infty}^{s\sigma} N(x; 0, 1) dx$$

Claude Fabienne Dürig | Higgs self-coupling at ILC | ILD Analysis and Software meeting, 23.07.2014 | 14/10