Recoil mass analysis to prove performance not to be different between SiECAL and ScECAL

June, 27, 2014 T. Ogawa

Today's report :

➡ Analysis of invisible higgs decay with two ECAL options.

My Motivation

1. My motivation is to compare performance between SiECAL and ScECAL

cj^Q

cj^Q

➡ Problem of fake hits

My Status

SSA

ડો⁰ ડો⁰

- JER b/w Si and Sc is slightly difference, ~ 0.3%.
- Sc has problem due to fake hits.

2. Invisible Higgs decays

- For detectors.
 - Jet Energy Resolution is essential.
- For physics.
 - It is clear signal for new physics.

➡ Jet Energy Resolution

My Simulation condition & Analysis flow

1. Simulation condition.

- Analysis channel is qq.
- √s is 250GeV(L=250fb^-1), 350GeV(L=350fb^-1).
 - Beam polarization is (-0.8, +0.3)

- All sample are full reconstructed by using SiECAL and ScECAL.

```
Sig) ZH ⇒ qqH : H ⇒ invisible decay (?). (For now, H->ZZ->vvvv.)
```

I assumed Br is 5%.

- I generated only most dominant BG by using two ECals.

BG) ZZ→qqII, WW→qqII, Zvv→qqvv.

	Process	$\sigma(fb)$	$\sigma \cdot L$
2. Cross section.	$ZH \rightarrow qqH_{inv} \ (Br5\%)$	10.6	2650
	$ZH \rightarrow qqH \ (SM)$	212.2 - 10.6	53058 - 2650
	$ZH \rightarrow vvH$ (SM)	78.3	19573
	$ZZ \rightarrow qqll$	685.4	1.7×10^{5}
	$WW \rightarrow qqll$	10955	2.7×10^{6}
	$Zvv \rightarrow qqvv$	272.3	68082

```
Tomohisa Ogawa (D1)
```

Signal: Z mass

1. Comparison of Z mass.

- Width and Resolution.

- SiECal: Sigma with Gaussian is 4.0GeV. (Mean with Gaussian 90.8GeV) Resolution is 4.4%.
- ScECal: Sigma with Gaussian is 4.0GeV. (Mean with Gaussian 90.1GeV) Resolution is 4.4%.
- Reason of shift from SI.
 - Not enough tuning of SC ECal, Miss clustering, or ...

Background Suppression

1. Comparison of Z mass.

- 0) 20< logY23 <75
- 0) 20< nPFOs <75
- 1) visE < 130
- 2) |cosθjet2| <0.95
- 3) -0.8 < |cosθjet12| <0.1
- 4) |cosθZ| <0.95
- 5) Pt^2_jet1>7000
- 6) 70< E_z < 130
- 7) 75 < M_z <105
- 8) 108< Mrecoil < 160

1. Signal ε.

- Same cut values were applied for both ECals.

SIECal: $\epsilon = 61.0\%$ SCECal: $\epsilon = 61.8\%$ ➡ Some distributions with SI ECal.

Tomohisa Ogawa (D1)

Signal Overlaid with BG

1.1 $ZH \rightarrow qqH_{inv}$ at 250GeV with SI and SC ECal

1. SI ECal:

 $N_sig = 1615$, $N_BG = 44420$, S/N = 3.6%,

Process	$\epsilon_{all-sel}(\%)$	$N_{all-sel}$ (Norm)
$ZH \to qqH_{inv} \ (Br5\%)$	61.0	1615
$ZH \to qqH \ (SM)$	0.13	68
$ZH \to vvH \ (SM)$	5.34	1045
$ZZ \rightarrow qqll$	6.12	10493
$WW \rightarrow qqll$	0.72	19742
$Zvv \to qqvv$	19.2	13073

2. SC ECal:

 M_{recoil} [GeV]

Tomohisa Ogawa (D1)

Signal Overlaid with BG

1.1 $ZH \rightarrow qqH_{inv}$ at 250GeV with SI and SC ECal

1. SI ECal:

N_sig = 1320, N_BG = 20198, S/N = 6.5%,

More tight recoil window

2. SC ECal:

Still slightly not good

Today's summary & Next step

- I analyzed invisible Higgs decay with two ECAL options.
- As a result in 250GeV case, performance of SC ECAL just slightly became worse?

- Estimation of upper limits on the BF with Toy MC.
- Try with MVA selection.

- Then move on 350GeV case.

Back up Slides

Tuning of SiECAL and ScECAL

➡ Linearity

Tomohisa Ogawa (D1)

My Status