Update of Analysis of Long Lived Stau

4th July 2014 Physics and Software Meeting K. Kotera

1

Status

Wataru Yamaura has analyzed long lived stau at ILD with the fast simulation finished at 2012 spring assuming;

- Gage Mediated SUSY Braking
- $M_{stau} = 150 \text{ GeV}$ and 205 GeV
- 200 fb⁻¹

$$\Gamma_{\tilde{\tau}\rightarrow\tilde{G}}=\frac{1}{48\pi M_p^2}\frac{m_{\tilde{\tau}}^5}{m_{\tilde{G}}^2}\Big[1-\frac{m_{\tilde{G}}^2}{m_{\tilde{\tau}}^2}\Big]^4$$

However, Stau with those masses is excluded by LHC experiments.

So we need to analyze with lager mass.

 $m_{\tilde{\tau}_1} < m_{\tilde{e}_R}, m_{\tilde{\mu}_R} < m_{\chi_1^0},$

$$\begin{array}{ll} 1. \ e^+e^- \to \tilde{\tau}_1^+ \tilde{\tau}_1^- & \text{easily distinguished} \\ 2. \ e^+e^- \to \tilde{l}_R^+ \tilde{l}_R^- \to l^+ \tilde{\tau}_1^+ \tau^- l^- \tilde{\tau}_1^- \tau^+ & \\ 3. \ e^+e^- \to \chi_1^0 \chi_1^0 \to \tilde{\tau}_1^+ \tau^- \tilde{\tau}_1^- \tau^+ & \\ 4. \ e^+e^- \to \chi_1^0 \chi_1^0 \to \tilde{l}_R^+ l^- \tilde{l}_R^- l^+ \to l^+ \tilde{\tau}_1^+ \tau^- l^- l^- \tilde{\tau}_1^- \tau^+ l^+ \end{array}$$

Spectra are calculated by using ISAJET.

Energy scan of the cross section $ee \rightarrow \tilde{\tau} \tilde{\tau}$ Wataru's result

I'm afraid if incomplete polarization does not effect on 1/4

Angular distribution of ee $ightarrow ilde{ au} \, ilde{ au} \, ilde{ au} \, ilde{ au} \, ilde{ au}$ Wataru's result

(spin = 1) x 1 \rightarrow (spin = 0) x 2

Uncertainty of M $\tilde{\tau}$ measured by TOF to ECAL Wataru's result

1 ns ScECAL timing resolution is assumed

Results come from compensation between increasing crosssection and increasing uncertainty of timing resolution ration as the center of mass energy increases.

Uncertainty of M $\tilde{\tau}$ measured by energy loss in TPC (dE/dx)

0.5% Δ (dE/dx) is assumed.

Results come from compensation between increasing crosssection (N) and degrading β as the function of dE/dx.

Life time of $ilde{ au}$

Wataru's result

Effect of the selection criteria

$M_{stau} = 150 \text{ GeV}$

	signal	$ZZ \to l^+ l^- \tau^+ \tau^-$	$ZZ \rightarrow l^+ l^- q \bar{q}$	$ZH \to l^+ l^- \tau^+ \tau^-$	$ZH \rightarrow l^+ l^- q \bar{q}$
all	13460	470	2175	749	4836
# of tracks = 2	13457	466	2153	732	4821
# of jets = 2	13364	451	2086	720	4785
$P_t > 5 { m GeV}$	12689	321	1218	364	2314
$ dE/dx ^*$	4760	1	5	1	4
efficiency(%)	35.3	0.2	0.2	0.1	0.1

M_{stau} = 205 GeV

	signal	$ZZ \rightarrow l^+ l^- \tau^+ \tau^-$	$ZZ \rightarrow l^+ l^- q \bar{q}$	$ZH \to l^+ l^- \tau^+ \tau^-$	$ZH \rightarrow l^+ l^- q \bar{q}$
all	2625	470	2175	749	4836
# of tracks = 2	2601	466	2153	732	4821
# of jets $= 2$	2576	451	2086	720	4785
$P_t < 20 { m ~GeV}$	2555	421	1918	664	4514
$ dE/dx ^*$	2538	1	3	1	4
efficiency(%)	96.7	0.2	0.2	0.1	0.1

Wataru's result(angular dist.)

 $\Delta M_{\chi 0}/M_{\chi 0}=0.6\%$

Update

Exclusion by ATLAS

August 2013 using 16 fb⁻¹ 95% CL GMSB scenario 391(5), 402(10), 392(20),

382(30), 366(40),347(50) GeV (tanβ) **Directly produced sleptons**

Considering squarks and gluinos suppressed due to their large masses

Excluded M_{stau} 300 - 345 GeV

Exclusion by CMS

30th July 2013 using 5.0 fb⁻¹ (7 TeV) 18.8 fb⁻¹ (8 TeV) Direct + indirect Excluded M_{stau} < 500 GeV

Directly produced sleptons Excluded M_{stau} < 339 GeV

Status

Keita Kasama has reanalyzed long lived stau at ILD

- Gage Mediated SUSY Braking
- M_{stau} = 350 GeV (scenario 1), 500 GeV (scenario 2)
- $M_{\chi 0} = 599$ GeV (scenario 1), 888 GeV (scenario 2),

 $m_{\tilde{\tau}_1} < m_{\tilde{e}_R}, m_{\tilde{\mu}_R} < m_{\chi_1^0},$

Spectra are calculated by using ISAJET 7.82.

Energy scan of the cross section Keita's result

Angular distribution of ee $ightarrow ilde{ au} \, ilde{ au} \, ilde{ au} \, ilde{ au} \, ilde{ au}$ Keita's result

(spin = 1) x 1 \rightarrow (spin = 0) x 2

Uncertainty of Mīmeasured by TOF to ECAL Keita's result

□ :from TOF, ○ :from N of events, ▲ :total

 $\Delta M_{stau}/M_{stau} = 0.11\%$

 $\Delta M_{stau}/M_{stau} = 0.17\%$

1 ns ScECAL timing resolution is assumed Although 1000 fb⁻¹ is planed at 1 TeV, we assume 100 fb⁻¹ for those special runs

Uncertainty of Mτ̃measured by energy loss in TPC (dE/dx)_{Keita's result}

0.5% Δ (dE/dx) is assumed.

Although 1000 fb⁻¹ is planed at 1 TeV, we assume 100 fb⁻¹ for those special runs

Life time of $ilde{ au}$

Keita's result

Summary

Analysis of the long lived stau was updated due to the exclusion of Mass limit by LHC.

Two scenario, $M_{stau} = 350$ GeV and 500 GeV are studied.

 Δ Mstau/Mstau = 0.11%, and 0.17% for M_{stau} = 350 GeV and 500 GeV, respectively with both TOF technique and dE/dx technique.

 Δ Life/Life = 15±2% and 27±7% for M_{stau} = 350 GeV and 500 GeV, respectively