$h \to \tau^+ \tau^-$ BR Study Performance of tau finder for 500 GeV $\nu \bar{\nu} h$ Shin-ichi Kawada Hiroshima University ## Tau finder study - I checked the performance of tau finder (for 500 GeV $\nu \bar{\nu} h$) with using MC matching. - Is a $\tau^-(\tau^+)$ really reconstructed as a $\tau^-(\tau^+)$? - try to understand the reason of mis-finding - I applied MC matching to most energetic $\tau^-(\tau^+)$. #### Procedure for τ^- - 1. Get energetic τ^- and get each particle in τ^- - 2. Apply MC matching for each particle in τ^- - 1. Is the parent τ ? - 2. If τ , is it τ^- or τ^+ ? - 3. If τ^- , is the parent of τ^- really Higgs? • Applied same procedure for τ^+ (of course the charge is opposite) ### Matching results | ## particle in $ au^-$ | 1 | 2 | 3 | 4 | |------------------------|-------|---|-----|------| | charged | 18220 | 0 | 74 | 494 | | neutral | 20652 | 0 | 138 | 1070 | the parent of a particle is... 1: τ^- and Higgs (GOOD!) 2: τ^- , but not Higgs 3: τ^{+} 4: overlaid object | ## particle in $ au^+$ | 1 | 2 | 3 | 4 | |------------------------|-------|---|-----|------| | charged | 18360 | 0 | 83 | 469 | | neutral | 20665 | 0 | 157 | 1169 | the parent of a particle is... 1: τ^+ and Higgs (GOOD!) 2: τ^+ , but not Higgs 3: τ^{-} 4: overlaid object ### Results - Tau finding (in 500 GeV $\nu \bar{\nu} h$) is working well. - The reason of mis-finding mostly comes from overlaid process. ## Summary & Plans - I checked the tau finder performance for 500 GeV $\nu \bar{\nu} h$. - Tau finding works well, mis-finding mostly comes from overlaid process. - try to improve if possible - Next step: Event generation with proper tau polarization (maybe starts at 250 GeV) - I submitted the abstract for JPS meeting. (Deadline is today.)