$h \to \tau^+ \tau^-$ BR Study Performance of tau finder for 500 GeV $\nu \bar{\nu} h$

Shin-ichi Kawada Hiroshima University

Tau finder study

- I checked the performance of tau finder (for 500 GeV $\nu \bar{\nu} h$) with using MC matching.
 - Is a $\tau^-(\tau^+)$ really reconstructed as a $\tau^-(\tau^+)$?
 - try to understand the reason of mis-finding
- I applied MC matching to most energetic $\tau^-(\tau^+)$.

Procedure for τ^-

- 1. Get energetic τ^- and get each particle in τ^-
- 2. Apply MC matching for each particle in τ^-
 - 1. Is the parent τ ?
 - 2. If τ , is it τ^- or τ^+ ?
 - 3. If τ^- , is the parent of τ^- really Higgs?

• Applied same procedure for τ^+ (of course the charge is opposite)

Matching results

## particle in $ au^-$	1	2	3	4
charged	18220	0	74	494
neutral	20652	0	138	1070

the parent of a particle is...

1: τ^- and Higgs (GOOD!)

2: τ^- , but not Higgs

3: τ^{+}

4: overlaid object

## particle in $ au^+$	1	2	3	4
charged	18360	0	83	469
neutral	20665	0	157	1169

the parent of a particle is...

1: τ^+ and Higgs (GOOD!)

2: τ^+ , but not Higgs

3: τ^{-}

4: overlaid object

Results

- Tau finding (in 500 GeV $\nu \bar{\nu} h$) is working well.
- The reason of mis-finding mostly comes from overlaid process.

Summary & Plans

- I checked the tau finder performance for 500 GeV $\nu \bar{\nu} h$.
- Tau finding works well, mis-finding mostly comes from overlaid process.
 - try to improve if possible
- Next step: Event generation with proper tau polarization (maybe starts at 250 GeV)
- I submitted the abstract for JPS meeting.
 (Deadline is today.)