H-disease in TESLA cavities

- Q-reduction in SC cavities
 - First disastrous findings with HERA cavities and at the Darmstadt SC linac
 - Suspicion of Hydrogen as reason for loss
 - Confirmation of Hydrogen disease
- H disease test in 9-cell cavities
 - List of all tests
 - Discussion of test results
 - Conclusion to XFEL operation
- Recent findings at KEK
- Discussion & Conclusion

Hydrogen Disease in SC Cavities "Q-disease"

- First observation of anomalous increase of cavity losses
 - At HERA cavities after second or more cool downs at horizontal cryostat in 1991
 - Similar effect seen at the Darmstadt SC accelerator after warm up to 140K due to refrigerator break down and cool down after 20 hours.
 - Was never seen at vertical test stands before, only after very slow cool down during Christmas at Wuppertal
- Systematic investigations were started at several laboratories afterwards.

First observation of Q-disease with HERA Cavities

Figure 1: Q degradation after several cooldowns

Phasendiagramm des Nb –H Systems für chemisch reines rekristallisiertes Nb Im The String of Gleichgewicht

Verification of H-disease effect around 100K with HERA cavities

Fig. 3: Measured Q vs E_{acc} curves for different cooldown conditions 1st: continous cooldown from 300 K to 4.2 K in 24 h 2nd (3rd, 4th, 5th): stop during cooldown at 180 K (150 K, 100 K, 150 K) for 20 h; afterwards fast cooldown to 4.2 K in about 1.5 h (1.8 h, 1.5 h, 1.3 h)

H disease investigations (Saclay)

Mechanism of Hydrogen disease

- Hydrogen can move freely in Nb at room temperature as interstitial impurity
- There is a phase transition to NbH_x around 130K
- NbH_x has a slightly larger lattice constant as compared to pure Nb
 - NbH_x will settle at lattice distortions or at the surface
 - Around 130 K NbH_x will migrate to the surface and produce RF losses (it is a normal conductor)
 - At very low temperatures NbH_x will not move any more
- Cure against H-disease
 - Fast cool down (typical condition at vertical test with dewar cooling
 - Degassing of Nb at temperatures around 800°C (or higher)

H-disease test with 9-cell EP cavities

Cavity	Tests	Q-Tests after EP	Q-Test- negativ	Q-Test positiv
AC71	15	4	3	1
AC74	8	1	1	
AC75	5	1	1	
AC76	15	2	2	
AC78	15	4	4	
AC80	6	4	2	2
AC81	8	1	1	
Z 82	6	1	1	1
Z 83	4	2	2	
Z 84	7	5	1	4
Z85	3	1	1	
Z86	3	0		
Z87	4	1	1	
Z88	1	1	1	
Z90	3	1	1	
Sum	103	29	22	8

8 more measured cavities with no Q disease

<u>~1.001700</u>

cavity	dat e	treatment	H- disease	remarks	EP contai ner
AC 71	27.10. 05	50 um EP,	yes	cool down condition not listed in data bank (100-120K)	17
	12.01. 06	HT 800C, EP 50um	no	cool down condition not listed in data bank	20
AC 80	19.02. 04	HT 800C,330 um EP, first test	strong	stored between 90-140K	"0"
	11.03. 04	baking 120C	yes	stored between 100-150K	
	04.08. 04	new HT 800C, EP 50 um	no	stored between 100-120 K	1
Z 82	24.11. 05	HT 1400C, EP 70 um	yes	(70-114K)	17
Z 84	12.10. 04	800C, 250um EP, first test	strong	19h between 100-140K during first cool down	4, 5
	13.10. 04	re-test	weak	warm up, fast cool down	
	17.11. 04	50 um EP	no	stored between 50-100K (only)	7
	11.04. 05	50 um EP	yes	stored between 90-160K	9
	12.04. 05	re-test	no	warm up, fast cool down	
	14.11. 05	HT 1400C, 80um EPD.Proch,	TT &I SMFF n	နေးရး Podbetween 70-130K	(15, 16) 17
	15.11. 05	re-test	27.July06 weak	warm up, fast cool down	

9 – cell Cavities with H disease

Cavity	Q [10^9] at 23MV/m
AC 71	3,5
AC 80	0,2
AC 82	0,5
Z 84, 12.Oct 04	1,3
Z 84,11.April	0,8
Z 84 14. Nov.05	0,1

9 – cell Cavities with H disease

Cavity	Q [10^9] at 23MV/m
AC 71	3,5
AC 80	0,2
AC 82	0,5
Z 84, 12.Oct 04	1,3
Z 84,11.April	0,8
Z 84 14. Nov.05	0,1

Where does the H contamination come from?

- RRR300 Nb from companies is free of H (spec. reqires less than 10 Wppm),
- Grinding under water will inject H from H₂O (reason for HERA cavities) [DESY, KEK,...]
- EDM will inject H [DESY, KEK, Jlab,...]
- BCP above 22 °C [DESY, Heraeus]
- EP produces H at cathode [chemistry]
- EP chemistry after switching off current) [KEK, Heraeus]

How to avoid H contamination

- Grinding with water free liquid [FC77, KEK]
- BCP below 22 °C [DESY]
- EP: venting of H, protection with cloth [KEK, DESY,..]
- EP: add HNO₃ to EP chemistry to protect the Nb surface by oxidation against H penetration [KEK]

KEK Investigations on H disease : EP/BCP after grinding

KEK Investigations on H disease :EP(+HNO₃) after grinding

Figure 8: No hydrogen Q-disease resulted for combination of H-free CBP and oxidizer added EP

Failure report in EP system at KEK/Nomura

SMTF meeting 5 October 2005 Takayuki SAEKI (KEK)

27.July06

Cathode bag was not setup properly by operator => Hydrogen Q-disease

27.July06

Cathode and cathode bag

27.July06

ZI.JUIYUO

H disease: Areas for R&D

- Continue H disease tests on 9-cells
- Establish H disease tests on 1-cells
 - So far 5 tests, all no H disease
 - All are treated at Henkel company
 - They use constant current (DESY)
 - They mix the acid by themselves
- Communicate with other laboratories
 - Convince colleagues about need of H-test
- Start sample measurements (H content) after various treatments
 - Detailed program needs to be defined

H disease: Areas for R&D, cont.

- Stable EP parameters
 - Identify missing parameter for arbitrary appearance of H-disease
 - QA on EP chemistry
 - Control of all (?) relevant process parameter
 - H venting in multi-cell EP
 - H contamination after stop of EP / start of rinsing
- Is High RRR Nb more sensitive to H disease?

Alternative approach

- Heat treatment around 800°C will definitely clean Nb from Hydrogen
- EP has the danger of H contamination
- Therefore a low risk procedure could be:
 EP of cavities to reach smooth surface
 - Heat treatment at 800°C
 - Only slight BCP for last cleaning, several um will not deteriorate the EP surface properties
 - HP rinse

Conclusion

- 5 out of 29 + 8 Q-tests uncovered H- disease
- But "dangerous" temperature range might vary; in our tests we might have missed Q disease which will show up in slow linac cool down
- These 5 cases belong to 4 different cavities
- In these 5 cases a new or additional EP treatment was applied
- In 4 out of these 5 cases the additional cryo-losses are not acceptable (and 24 MV/m might not be in reach)
- Correlation ? The acid container #17 was used for EP in 2+1/2 treatments; two other acid container for the two other treatments
- After 800°C heat treatment the Nb is cleaned from H contamination. Substitution of EP by BCP as final light cleaning will substantially reduce the risk of H disease.

Kenji`s Comments

From the study on Higuchi as PhD, I understood several things:

1) Mechanical polishing (Tumbling) dopes hydrogen, if it uses a >>> liquid contained hydrogen like water. >>>

2) EDM dopes hydrogen, which comes from oil or water used EDM. >>>

3) When once hydrogen is doped in those process, afterwards material >>> removal like BCP or EP cannot eliminate the hydrogen. >>>

4) Annealing can only remove the hydrogen. >>>

5) Even annealed, when the surface damaged layer still is remained >>> it will pick up hydrogen during EP. >>>

6) Hydrogen is picked up through grain boundary channels. So >>> concerning is gain boundaries.