Study of Single-W process

Shinshu University K. Tsuchimoto

18th, July 2014 :

Motivations

- Precise measurement of W boson mass
 - measuring m_w to a few MeV in W—>qq' decays
 - challenging requirements on JER and calibration
 - needs detecter optimization
 - comparison of performance among different options of calorimeters (e.g., Si or Scintillator ECAL)
- Study of anomalous triple-gauge-boson couplings
 - · mainly WW γ and WWZ couplings
 - $\cdot\,$ signal of new physics beyond the SM

Trying m_w measurement

Now I'm training and searching better analysis method.

Simulation condition

- $\sqrt{s} = 250 \text{ GeV}$, Luminosity : 1000 fb⁻¹
- Beam polarization : eLpL(-1.0, -1.0), eLpR(-1.0, +1.0)
- No backgrounds so far
- Detector model : ILD_o1_v5
- ILC soft version : v01-17-05

Analysis method

- All final states of this process are : (e, ν, W—>qq'(jet)
- 1. Require one isolated electron or positron by using lepton finder of MarlinReco I think these have characteristic feature.
- 2. Force remainder of PFOs into 2 jets with Durham algorithm
- 3. Reconstruct the invariant mass of di-jet

W boson mass reconstruction

started with sample 4000 events Statistics changes due to the different compositions of effective diagrams, which are determined by beam polarization.

Both peaks are nearly ~80GeV, but a bit larger than m_w

Characteristic electron/positron feature

Examples of background

 $W \rightarrow e \nu$ $\overline{d}(2)$ $e^{-}(32)$ $e^{-}(32)$ $\bar{\nu}_e(8)$ Mass of 2-jet doesn't u(1)W Z $\frac{W^{-}}{\bar{\nu}_{e}}(8)$ Z $\overline{d}(2)$ equal to m_w. $e^{+}(16)$ u(1) $e^{+}(16)$ $e^{-}(4)$ 4 9 These becomes Backgrounds. qq' jets from resonance Z qq'jets from off-shell W

We need to research number of these events and know how to tag them.

Summary and Next stage

 I reconstructed invariant mass of 2-jet from W boson decay in single-W process.

- With my selection criteria, leptonic decays $(W \rightarrow e \nu)$ become the backgrounds of reconstructing W boson mass.
- \cdot Reconstructed m_w were a bit larger than 80MeV, I think this is due to these backgrounds above.
- Next, I will keep trying to analyze m_w measurement, and search better selection criteria.

Back up slides

