Recoil mass analysis to prove performance not to be different between SiECAL and ScECAL

July, 18, 2014

T. Ogawa

Today's report :

➡ Analysis of invisible higgs decay with two ECAL options.

1. My motivation is to compare performance between SiECAL and ScECAL

- JER b/w Si and Sc is slightly difference, ~ 0.3%.
- Sc has problem due to fake hits.

2. Invisible Higgs decays

- For detectors.
 - Jet Energy Resolution is essential.
- For physics.
 - It is clear signal for new physics.

1. Simulation condition.

- Analysis process is $ZH \rightarrow qqH (H \rightarrow inv)$.

- √s is 250GeV(L=250fb^-1), 350GeV(L=350fb^-1). Beam polarization is (-0.8, +0.3)

- All sample are full reconstructed by using SiECAL and ScECAL.

<u>Sig)</u> $ZH \Rightarrow qqH : H \Rightarrow$ invisible decay. (For now, H->ZZ->vvvv.) <u>Lassumed Br is10%</u>.

- Also I generated only most dominant BG by using each ECal.

BG) $ZZ \rightarrow qqll, Zvv \rightarrow qqvv, WW \rightarrow qqll, Wev \rightarrow qqev,$

2. Cross section.

\sqrt{s} =250GeV, L=250	fb^{-1} , $P(e^-,e^+)$) = P(-0.8, +0.3)
Process	$\sigma(fb)$	$\sigma \cdot L$
${\sf ZH} \to {\sf qqH}_{\sf inv}$	21.2	5300
$ZH ightarrow qqH\ (SM)$	212.2 - 21.2	53058 - 5300
ZH ightarrow vvH (SM)	78.3	1.9×10^{4}
ZZ ightarrow qqII	685.4	$1.7{ imes}10^{5}$
Zvv ightarrow qqvv	272.3	6.8×10^4
WW o qqII	10955	2.7×10^{6}
$Wev \to qqev$	5910.1	1.5×10^{6}

 \sqrt{s} =350GeV, L=350fb⁻¹, P(e⁻, e⁺)=P(-0.8, +0.3)

Process	$\sigma(fb)$	$\sigma \cdot L$
${\sf ZH} \to {\sf qqH}_{\sf inv}$	13.7	3425
$ZH ightarrow qqH\ (SM)$	137.7 - 13.7	34425 - 3425
ZH ightarrow vvH (SM)	99.6	2.5×10^{4}
ZZ ightarrow qqII	470.8	1.2×10^{5}
Zvv ightarrow qqvv	356.4	8.9×10^{5}
$WW \to qqII$	8090.6	2.0×10^{6}
$Wev \to qqev$	4963.8	1.2×10^{6}

Signal: Z mass and Recoil mass @ $\sqrt{s}=250$ GeV

1. Comparison of Z mass.

2. Comparison of Recoil mass.

Signal: Z mass and Recoil mass @ $\sqrt{s}=350$ GeV

1. Comparison of Z mass.

2. Comparison of Recoil mass.

T.Ogawa (D1)

1. Recoil Distribution with BG.

Si ECAL @ 250 GeV															
								Sc ECAL @ 250 GeV							
Cuts(%)	${\sf ZH} \to {\sf qqH}_{\sf inv}$	${\sf ZH} ightarrow {\sf qqH}$	$ZH \rightarrow vvH$	$ZZ \rightarrow qqII$	$Zvv \rightarrow qqvv$	$WW \rightarrow qqII$	Wev o qqev	Cuts(%)	${\sf ZH} \to {\sf qqH}_{\sf inv}$	${\sf ZH} \to {\sf qqH}$	$ZH \to vvH$	ZZ ightarrow qqII	$Zvv \rightarrow qqvv$	WW ightarrow qqll	Wev ightarrow qqev
No cut	100.0	100.0	100.0	100.0	100.0	100.0	100.0	No cut	100.0	100.0	100.0	100.0	100.0	100.0	100.0
+ Iso lepton veto=0	99.8	92.1	92.3	80.0	99.8	54.6	29.6	+ Iso lepton veto=0	99.8	92.0	92.2	80.0	99.8	54.5	30.6
$+$ 1.5< $-LogY_{23}$ <10.5	99.8	83.7	88.3	78.8	99.6	54.5	29.5	$+$ 1.5< $-LogY_{23}$ <10.5	99.8	83.5	89.2	79.2	99.8	54.3	30.5
+ 20<#PFOs <75	98.0	16.7	74.6	76.0	95.0	53.8	29.2	+ 20<#PFOs <75	97.8	14.9	72.4	76.0	95.0	53.4	30.1
$+ \cos \theta_{jet1} < 0.95$	85.7	15.3	67.4	63.9	84.1	41.3	18.7	$+ \cos\theta_{jet1} < 0.95$	85.5	13.6	65.4	63.7	84.1	41.1	19.4
$+ \cos \theta_{jet12} < 0.1$	84.7	15.3	66.8	60.7	78.4	39.0	18.0	$+ \cos\theta_{jet12} < 0.1$	84.6	13.6	64.8	60.4	78.3	38.9	18.7
$+ \cos \theta_{Z} < 0.95$	81.4	14.2	63.6	52.9	70.7	34.7	17.0	$+ \cos\theta_{\rm Z} < 0.95$	81.3	12.7	61.7	52.8	70.5	34.5	17.7
+ 75 < Mz < 105	75.4	14.0	50.0	51.0	66.7	34.0	16.9	+ 75 <mz<105< td=""><td>75.3</td><td>12.4</td><td>47.2</td><td>50.7</td><td>66.4</td><td>33.8</td><td>17.6</td></mz<105<>	75.3	12.4	47.2	50.7	66.4	33.8	17.6
+ 75 <ez<105< td=""><td>75.1</td><td>4.24</td><td>15.5</td><td>34.3</td><td>59.4</td><td>9.10</td><td>4.00</td><td>+ 75<ez<105< td=""><td>75.0</td><td>3.54</td><td>15.3</td><td>34.8</td><td>60.3</td><td>9.03</td><td>4.50</td></ez<105<></td></ez<105<>	75.1	4.24	15.5	34.3	59.4	9.10	4.00	+ 75 <ez<105< td=""><td>75.0</td><td>3.54</td><td>15.3</td><td>34.8</td><td>60.3</td><td>9.03</td><td>4.50</td></ez<105<>	75.0	3.54	15.3	34.8	60.3	9.03	4.50
$+ Pt_{iet1}^2 < 7000$	74.7	0.21	8.67	26.2	53.1	2.47	0.13	$+ Pt_{iet1}^2 < 7000$	74.7	0.17	9.00	26.9	54.4	2.63	0.13
+ BĎT<0.0	74.4	0.19	8.14	7.93	26.9	0.98	0.05	+ BĎT<0.0	74.4	0.15	8.30	7.91	26.9	0.99	0.05
+ 110 <mrecoil<160< td=""><td>74.1</td><td>0.19</td><td>7.88</td><td>7.84</td><td>26.2</td><td>0.95</td><td>0.05</td><td>+ 110<mrecoil<160< td=""><td>74.1</td><td>0.15</td><td>8.00</td><td>7.83</td><td>26.3</td><td>0.98</td><td>0.05</td></mrecoil<160<></td></mrecoil<160<>	74.1	0.19	7.88	7.84	26.2	0.95	0.05	+ 110 <mrecoil<160< td=""><td>74.1</td><td>0.15</td><td>8.00</td><td>7.83</td><td>26.3</td><td>0.98</td><td>0.05</td></mrecoil<160<>	74.1	0.15	8.00	7.83	26.3	0.98	0.05

1. Recoil Distribution with BG.

Si ECAL @ 350 GeV											Sc ECAL @ 350 GeV				
Cuts(%)	$ZH \to qqH_{inv}$	$ZH \rightarrow qqH$	$ZH \rightarrow vvH$	ZZ ightarrow qqII	Zvv ightarrow qqvv	WW ightarrow qqII	Wev ightarrow qqev	Cuts(%)	$ZH \to qqH_{inv}$	${\sf ZH} ightarrow {\sf qqH}$	$ZH \rightarrow vvH$	ZZ ightarrow qqII	Zvv ightarrow qqvv	$WW \to qqII$	$Wev \to qqev$
No cut	100.0	100.0	-	100.0	100.0	100.0	100.0	No cut	100.0	100.0	100	100.0	100.0	100.0	100.0
+ Iso lepton veto=0	99.9	91.9	-	80.5	99.8	59.0	38.7	+ Iso lepton veto=0	99.8	92.0	92.3	80.5	99.8	58.8	40.1
$+ 2.0 < -LogY_{23} < 11.0$	99.5	72.9	-	77.9	99.2	58.3	38.3	$+ 2.0 < -LogY_{23} < 11.0$	99.6	79.7	88.5	79.0	99.4	58.2	39.7
+ 15<#PFOs <90	99.2	28.1	-	77.2	98.2	58.2	38.2	+ 15<#PFOs <90	99.3	26.6	80.6	78.1	98.4	58.1	39.7
$+ \cos\theta_{jet1} < 0.92$	83.1	25.6	-	48.5	74.4	26.3	11.8	$+ \cos\theta_{jet1} < 0.92$	83.3	24.2	66.7	48.8	74.6	26.2	12.6
$+ \cos \theta_{jet12} < 0.92$	82.3	4.48	-	37.6	70.5	13.3	6.02	$+ \cos\theta_{jet12} < 0.92$	82.4	4.04	62.6	37.5	70.5	13.3	6.35
$+ \cos \theta_{\rm Z} < 0.92$	80.1	3.13	-	29.5	59.0	10.4	4.86	$+ \cos\theta_{\rm Z} < 0.92$	80.3	2.95	57.0	29.3	59.2	10.4	5.16
+ 80 < Mz < 100	63.9	2.05	-	22.2	48.4	4.90	3.30	+ 80 < Mz < 100	64.3	1.86	6.87	22.1	48.6	4.72	3.45
+ 90 < Ez < 210	63.7	0.36	-	20.4	46.3	1.77	1.01	+ 90 <ez<210< td=""><td>64.1</td><td>0.37</td><td>5.94</td><td>20.5</td><td>46.4</td><td>1.81</td><td>1.10</td></ez<210<>	64.1	0.37	5.94	20.5	46.4	1.81	1.10
$+ Pt_{iet2}^2 < 6000$	63.6	0.36	-	20.3	44.7	1.76	1.01	$+ Pt_{iet2}^2 < 6000$	64.0	0.37	5.23	20.4	44.8	1.80	1.09
+ BDT<-0.1	62.5	0.36	-	16.9	36.7	1.46	0.86	+ BDT<-0.1	63.5	0.37	4.70	19.2	40.9	1.71	1.05
+ 90 <mrecoil<180< td=""><td>57.1</td><td>0.33</td><td>-</td><td>10.7</td><td>14.2</td><td>0.75</td><td>0.56</td><td>+ 90<mrecoil<180< td=""><td>57.9</td><td>0.34</td><td>1.63</td><td>12.9</td><td>15.8</td><td>0.88</td><td>0.66</td></mrecoil<180<></td></mrecoil<180<>	57.1	0.33	-	10.7	14.2	0.75	0.56	+ 90 <mrecoil<180< td=""><td>57.9</td><td>0.34</td><td>1.63</td><td>12.9</td><td>15.8</td><td>0.88</td><td>0.66</td></mrecoil<180<>	57.9	0.34	1.63	12.9	15.8	0.88	0.66

ToyMC Estimation of $\Delta\sigma/\sigma$ & Upper Limit

1. Decision of function shape.

2. ToyMC.

→Fit with fitting function and Pull out parameter "Nsig"

T.Ogawa (D1)

My Status

Precision of $\Delta\sigma/\sigma$ & Upper Limit of BR(H \rightarrow invisible) @ $\sqrt{s}=250$ GeV

1. Δσ/σ.

2. Upper limit.

T.Ogawa (D1)

My Status

Precision of $\Delta\sigma/\sigma$ & Upper Limit of BR(H \rightarrow invisible) @ $\sqrt{s}=350$ GeV

1. Δσ/σ.

For now, the result is strange

2. Upper limit.

T.Ogawa (D1)

Summary

1. I analyzed invisible Higgs decay with two ECAL options.

1. For 250GeV case, performance of both ECALs seems to be almost same.

1. For 350GeV case, I need to check some parts and have to fix it.

1. Estimation method of upper limit should be fixed.

1. Summarize this higgs invisible analysis as possible as I can.

T.Ogawa (D1)

