
How to access the SiD computing resources

Jan Strube Tohoku University

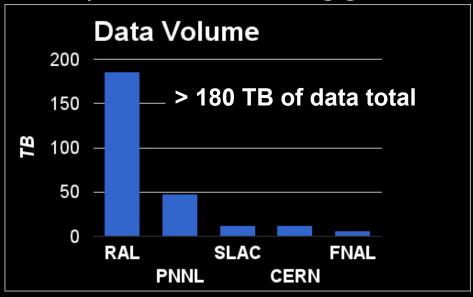
Overview

- Overview over software
- How much CPU / storage does SiD have?
- Where are the SiD resources located?
- How do we use the resources to run our jobs?

SiD on the Grid

SiD takes advantage of the international computing grid infrastructure

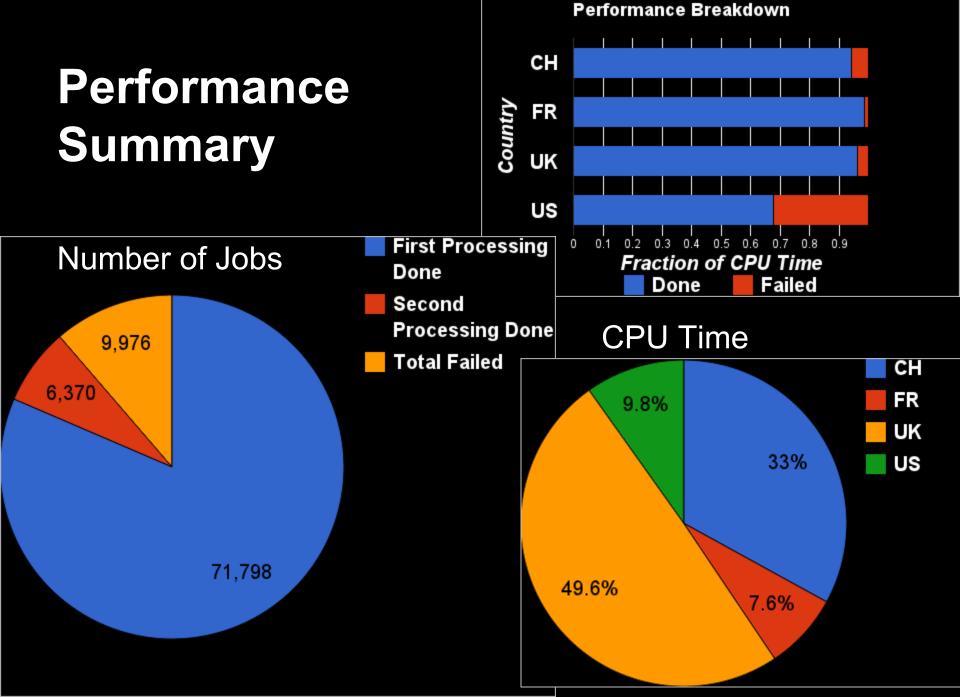
DBD Production in Numbers


Production summary on SLAC confluence

50.7 million events at 1 TeV

(+ 4.7 million gghadrons)

6.55 million events at 500 GeV


(+ 4.4 million gghadrons)

Simulation	Reconstruct	
25.3	3%	detailed simulation dominates
/	74.7%	CPU time budget

CPU time of different processing stages

Country	Total CPU Time (years)
UK	100.2
СН	68.2
FR	15.0
US	28.2
TOTAL	211.6

Reconstruction Workflow

- 1. Generate physics input (Tim Barklow)
- 2. Detector Simulation (SLIC)
- 3. "Overlay" of machine-induced background (org.lcsim)
- 4. Hit digitization / Track reconstruction (org. lcsim)
- calorimetric reconstruction / PFA (slicPandora)
- 6. Vertex finding (LCFIPlus)
- 7. Data reduction / truth matching (org.lcsim)
- Jet Finding / Flavor tagging (LCFIPlus)
- Background reduction / Data analysis (MarL)
 / ROOT)

On the grid

at this point intermediate files could be dropped

On the grid or download DST files and run on local farm

Constraints

- Simulation takes the largest amount of time
 - drives CPU requirements and file sizes
 - Could insert a file-merging step? (sandbox size limit)
- Limited number of beam-induced "overlay" events
 - Many different jobs access the same event at the same time
 - Heavy burden on storage elements. Relieved by replicating / duplicating / shuffling events
- Small size of DST files (< 100 MB).
 - Good for user analysis. Bad for file transfers / tape storage

How much CPU / storage does SiD have?

- Resources on the grid are shared within the ILC virtual organization (VO)
- VO members are
 - ILD -- DESY and KEK
 - Clicdp -- CERN / (IN2P3)
 - SiD -- Everything else!
- All three are currently running detector optimization campaigns
- Storage: 150 TB at RAL (full, some used by Clicdp), 150 TB PNNL, 20 TB at SLAC
- CPU: ILC VO Total: ~10k CPU + PNNL

Takeaway message I

- The production is a complicated beast. Don't submit jobs willy-nilly.
 - We don't have a fair-share mechanism within the ILC VO.
 - Storage elements / data distribution / file access need planning
- UK resources were nearly exclusively SiD
 - Liaison now John Marshall.
- Resources for the newly formed Clicdp group have not yet been negotiated
 - Currently overlap with SiD for historical reasons
 - To be negotiated within LCC Computing group

How to access the grid

- Obtain grid certificate from your local authority
- 2. Register with the ILC VO (Do not use the same certificate for ILC and LHC)
- 3. Register with ILCDirac and follow tutorials
 - a. https://twiki.cern.
 ch/twiki/bin/view/CLIC/DiracForUsers
 - b. https://confluence.slac.stanford.
 edu/display/ilc/Running+LCSim+Analysis+Jobs+on+t
 he+Grid+with+DIRAC

Where are the SiD samples located?

Stdhep (generator level):

https://confluence.slac.stanford. edu/display/ilc/Standard+Model+Data+Samples On the grid:

https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=138785074

https://confluence.slac.stanford. edu/display/ilc/DBD+Data+Samples

Currently: ~ 10 TB DST @ 1 TeV ⇒ 51 MEvents

~ 250 GB @ 500 GeV ⇒ 6.5 MEvents

~ 200 GB @ 250 GeV ⇒ 12 MEvents

Introduction to ILCDirac

- The Grid is a heterogeneous set of computing sites
 - Different architectures, configurations, limitations
- Any tool that claims it can hide this heterogeneity from you is lying
- Dirac is a service to submit computing jobs to grid sites. Similar to your local batch farm
- ILCDirac wraps several ILC applications and executes them with your credentials on grid sites

Example ILCDirac Script (snippet)

See https://confluence.slac.stanford.edu/display/~jstrube/RecoChain.py for complete example

```
from DIRAC.Core.Base import Script
Script.parseCommandLine()
from ILCDIRAC.Interfaces.API.DiracILC import DiracILC
                                                                            Initialization
dirac = DiracILC(True, "some job repository.rep")
from ILCDIRAC.Interfaces.API.NewInterface.UserJob import UserJob
iob = UserJob()
from ILCDIRAC.Interfaces.API.NewInterface.Applications import SLIC
slic = SLIC()
slic.setVersion('v2r9p8')
                                                                            Set up the application
slic.setInputFile("LFN:/ilc/prod/ilc/some/file.stdhep")
                                                                            (SLIC)
slic.setSteeringFile('MyMacro.mac')
slic.setDetectorModel('sidloi3')
slic.setOutputFile("out.slcio")
                                                        from file
                                      from input
res = job.append(slic)
                                                        catalog
                                      sandbox
job.setName("MyJobName")
iob.setJobGroup("Agroup")
job.setCPUTime(86400)
                                                                              Deal with Grid specifics:
job.setInputSandbox(["file1","file2"])
                                                                              - Don't interfere with ILD
job.setDestination("LCG.CERN.ch")
                                                                              - block broken wites e
job.setBannedSites(['LCG.DESY-HH.de', 'LCG.DESYZN.de', 'LCG.KEK.jp'])
                                                                              - Make sure binaries run
(50000)
job.setSystemConfig('x86 64-slc5-gcc43-opt')
                                                                              - require CPU time
job.setOutputData("out.slcio", "sidloi3/analysis", "PNNL-SRM")
job.setOutputSandbox(['*.log', '*.xml', '*.lcsim', '*.steer'])
job.submit()
                                                                                 grid output data
                                        log files (web frontend)
```

ILCDirac Features

- Submit scripts written in Python
 - Choose input files
 - reco steps mix and match
 - (semi-optionally) select sites for running
 - (semi-optionally) select site for output
- Web interface http://ilcdirac.cern.ch/DIRAC/
 - bookkeeping, restart failed jobs
- File Catalog
 - meta data search
 - find physical location of files
 - upload / download files

Takeaway message II

- The grid is advertised as fire-and-forget
 - Believe this at your own peril
- Our tools are getting better but you have to know a few details of where your jobs will go
 - Select only sites where we have negotiated resources
 - Several sites advertise they accept ILC jobs to the dirac system, but they are mis-configured, which leads to failed jobs and angry mails from admis
 - Only use storage at the main sites
 - FNAL has "volatile" storage...

Summary

- We've been using the grid very successfully.
 - Running in LHC overheads and negotiating with different admins
 - This has been pretty informal, but needs to be formalized
- Our existing configurations save you the pain of installing the correct version of all of the different software packages
 - But you still need to help us manage resources
 - And report bugs
- Go get your grid certificate and get started